CS 696 Intro to Big Data: Tools and Methods Spring Semester, 2021
 Doc 11 Regression
 Feb 23, 2021

Copyright ©, All rights reserved. 2021 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Machine Learning

Supervised

> Classification

Unsupervised
Regression
Reinforcement learning
Clustering

Density Estimation

Dimensionality Reduction

Supervised learning

Artificial neural network	Quadratic classifiers B-nearest neighbor
Bayesian statistics	Boosting
Gaussian process regression	Decision trees
Inductive logic programming	Random forests
Learning Vector Quantization	Bayesian networks
Logistic Model Tree	Naive Bayes
Nearest Neighbor Algorithm	Hidden Markov models
Random Forests	
Ordinal classification	
ANOVA	
Linear classifiers	
Fisher's linear discriminant	
Linear regression	
Logistic regression	
Multinomial logistic regression	
Naive Bayes classifier	

Unsupervised learning

Expectation-maximization algorithm
Vector Quantization
Generative topographic map
Information bottleneck method
Artificial neural networks
Hierarchical clustering
Single-linkage clustering
Conceptual clustering
Cluster analysis[edit]
K-means algorithm
Fuzzy clustering
DBSCAN
OPTICS algorithm
Outlier Detection
Local Outlier Factor

Other

Reinforcement learning
Temporal difference learning
Q-learning
Learning Automata
SARSA
Deep learning
Deep belief networks
Deep Boltzmann machines
Deep Convolutional neural networks
Deep Recurrent neural networks
Hierarchical temporal memory

Machine Learning \& Patterns

Machine learning algorithms
Detect patterns
Generate models based on those patterns

Feed a neural network pictures of cats
Neural net can identify cats
Can automate finding cat photo on internet

Drive a car with neural network "watching"
You actions
Videos of surroundings

Neural net can identify patterns \& start to drive

Limits of Pattern Matching

$$
1^{*}(4+1)=5
$$

$$
\begin{aligned}
& 2 *(5+1)=12 \\
& 3 *(6+1)=21 \\
& 8 *(11+1)=96 \\
& \\
& 0+1+4=5 \\
& 5+2+5=12 \\
& 12+3+6=21 \\
& 21+8+11=40
\end{aligned}
$$

Underspecification in Machine Learning

Underspecification Presents Challenges for Credibility in Modern Machine Learning Nov 2020
Authored by 40 Al researchers at Google
"ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain."
"The first claim is that underspecification in ML pipelines is a key obstacle to reliably training models that behave as expected in deployment"
"The second claim is that underspecification is ubiquitous in modern applications of ML, and has substantial practical implications"
https://arxiv.org/abs/2011.03395

Underspecification

https://soccermatics.medium.com/is-googles-ai-research-about-to-implode-4e1ab194fc0e

Underspecification in medical genomics

Is Google's Al research about to implode?

David Sumpter Feb 19, 2021
https://soccermatics.medium.com/is-googles-ai-research-about-to-implode-4e1ab194fc0e

Mathematical modeling consists of three components:

Assumptions:
Taken from our experience and intuition as basis of our thinking about a problem.

Model:
Representation of our assumptions in a way that we can reason as an equation or a simulation

Data:
What we measure and understand about the real world

Screendshot from Montezuma Revenge

No Free Lunch Theorems

David Wolpert, 1997

For every pattern a machine learning algorithm is good at learning, there's another pattern that same learner would be terrible at picking up

No Free Lunch

7 Deadly Sins of AI Predictions

Rodney Brooks, October 6, 2017
https://goo.gl/oK6z5Z

1. Amara's law

We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.

Example U.S. Global Positioning System (GPS)
Started 1978
Precise delivery of bombs
First real use 1991, but not fully embraced by US military for several more years Now

On mobile phones
Tracks planes, trucks
Sync US electrical grid
Determines which seed to plant in a field

7 Deadly Sins of AI Predictions

Rodney Brooks, October 6, 2017
https://goo.gl/oK6z5Z
3. Performance versus competence

7 Deadly Sins of AI Predictions

Rodney Brooks, October 6, 2017
https://goo.gl/oK6z5Z
3. Exponentials

Exponential growth not sustainable
iPod memory
year gigabytes

200210
200320
200440
200680
2007160

Deep Learning Breakthrough

Breakthrough paper on deep learning - back propagation 1986

Idea was abandoned for ~20 years because it was not producing results

Models

Machine Learning algorithms produce models

Models allow predictions or offer insights

Examples

Decreasing latency by X increases Amazon's daily revenue by Y

White males without college degrees favor Trump by X\% Females favor Clinton by Y\%

Models Approximate Reality

World is flat

World is a sphere

World is an oblate ellipsoid

Does the model provide useful predictions/insights

Under what conditions is the model useful

What are the estimates of the model's error

Multiple Factors in Model

Amazon's daily revenue depends on
Latency
Price
Steps needed to order
Page layout
Relevant suggestions
Search results
Font sizes
Color
Shipping costs
Some factors will be more important

Stochastic in nature

Independent variables

Regression

Regression

Measure of relation between mean of one variable (dependent) on one or more other variables (independent)

In chapter 11 of Julia for Data Science

Download the Jupyter notebook before reading
https://technicspub.com/analytics/
https://app.box.com/v/codefiles

Overview

Linear regression

Multiple linear regression

Generalized linear regression (model)

Is the dependent variable related to the independent variable

Generating the model

Error in the model

Effect of independent variables

Linear Regression

$$
\begin{aligned}
& f(x)=2 x+3 \\
& y=2 x+3
\end{aligned}
$$

$$
y=2 x+3
$$

Dependent Variable

Independent
Variable

Linear Regression

Actual relation (assumed)

$$
y=a+b x
$$

Compute linear line that fits the data best

$$
y=a+b x+e
$$

e - error or residual

Goal is to minimize residual overall

I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Are They Related?

Covariance

If $x \& y$ are related then they should vary from their means in a similar way

$$
d x_{i}=x_{i}-\bar{x}
$$

$$
d y_{i}=y_{i}-\bar{y}
$$

positive values - positive relation
$\operatorname{cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n} d x_{i} d y_{i}$
Values near zero indicate no relation
negative values - negative relation

DataFrame.cov

Effects of Scale

$$
1 \text { Pound = } 452.6 \text { grams }
$$

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526

Changing the scale of units Does not change the relationship Does change magnitude of Covariance

Makes covariance hard to evaluate

```
cost_usd = pd.Series([9, 24, 38])
pounds = pd.Series([3, 7, 10])
grams = pd.Series([1357.8, 3168.2, 4526])
cost_usd.cov(pounds)
cost_usd.cov(grams) 23007.2
cost_inr = cost_usd * 71.04 1_634_429.1
cost_inr.cov(grams)
\[
\begin{aligned}
& \text { data = pd.DataFrame(\{"cost": }[9,24,38], \\
& \\
& \text { "pounds":[3, 7, 10], } \\
& \\
& \text { "grams": }[1357.8,3168.2,4526]\})
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|}
\hline & cost & pounds & grams \\
\hline 0 & 9 & 3 & 1357.8 \\
\hline 1 & 24 & 7 & 3168.2 \\
\hline 2 & 38 & 10 & 4526 \\
\hline
\end{tabular}
data.cov()
\begin{tabular}{|c|c|c|c|}
\hline & cost & pounds & grams \\
\hline cost & 210.333333 & 50.833333 & \(2.300717 \mathrm{E}+04\) \\
\hline pounds & 50.833333 & 12.333333 & \(5.582067 \mathrm{E}+03\) \\
\hline grams & 23007.166667 & 5582.066667 & \(2.526443 \mathrm{E}+06\) \\
\hline
\end{tabular}

\section*{Units}
\[
\begin{array}{lr}
d x_{i}=x_{i}-\bar{x} & \text { Lbs } \\
d y_{i}=y_{i}-\bar{y} & \text { UsD }
\end{array}
\]
\[
\operatorname{cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n} d x_{i} d y_{i}
\]
\[
\text { cost_usd.cov(pounds) == } 50.8 \text { lbs*USD }
\]
\[
\text { cost_usd.cov(grams) == } 23007 \text { grams*USD }
\]
\begin{tabular}{|c|c|c|}
\hline Cost USD & Pounds & Grams \\
\hline 9 & 3 & 1357.8 \\
\hline 24 & 7 & 3168.2 \\
\hline 38 & 10 & 4526 \\
\hline
\end{tabular}

\section*{Normalizing Data}

Convert data to a common scale

Example - divide by maximum value
\begin{tabular}{|c|c|c|}
\hline Cost USD & Pounds & Grams \\
\hline 9 & 3 & 1357.8 \\
\hline 24 & 7 & 3168.2 \\
\hline 38 & 10 & 4526 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Cost & Amount \\
\hline 0.237 & 0.3 \\
\hline 0.632 & 0.7 \\
\hline 1 & 1 \\
\hline
\end{tabular}
normalized_amount = pounds/pounds.max() normalized_cost = cost_usd/cost_usd.max()
normalized_amount.cov(normalized_cost)
0.134

\section*{Pearson's Correlation - r}

\section*{\(r=\frac{\operatorname{cov}(X, Y)}{\sigma_{x} \sigma_{y}}\)}
corr

Normalized Covariance

Unitless

Range - 1 to 1

1 = maximumly related
-1 - maximumly inversely related

0 - not related

\section*{Pearson's Correlation - r}
\begin{tabular}{|c|c|c|}
\hline Cost USD & Pounds & Grams \\
\hline 9 & 3 & 1357.8 \\
\hline 24 & 7 & 3168.2 \\
\hline 38 & 10 & 4526 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { cost_usd.corr(pounds) } \\
& \text { cost_usd.corr(grams) }
\end{aligned}
\]

\section*{Pearson's Correlation r Value Examples}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 0.8 & 0.4 & 0 & -0.4 & -0.8 & -1 \\
\hline / &  &  &  &  &  &  \\
\hline 1 & 1 & 1 & undefined & -1 & -1 & -1 \\
\hline  &  &  & -- - & \(\cdots\) & & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline  &  &  &  &  &  & 絞家 \\
\hline
\end{tabular}

\section*{Regression Line}

\author{
Pearson's Co \\ x.corr(y) \(=0.992\)
}


What the line that minimizes the amount of residuals

\section*{Ordinary least squares}
\(b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\)
Standard way to fit line to data
\[
\begin{aligned}
& \mathrm{b}=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\operatorname{var}(\mathrm{X})} \\
& a=\bar{y}-b \bar{x}
\end{aligned}
\]

\section*{Computing Linear Regression - Some Data}
import matplotlib.pyplot as plt import numpy as np
\(y\) is our fake observed values
rng = np.random.RandomState(42)
\(x=10\) * rng.rand(50)
\(y=2\) * \(x\) - 1 + rng.randn(50)
plt.figure(figsize=(20,6))
plt.scatter(x, y);
pd.Series(x).corr(pd.Series(y))
0.99


\section*{Training the Model}
```

from sklearn.linear_model import LinearRegression
X = x[,np.newaxis]
//sklearn requires 2D for independent var
model = LinearRegression(fit_intercept=True)
model.fit(X, y)
model.coef_[0] 1.977656600385311
model.intercept_ -0.9033107255311164
Regression line
y = 1.977656600385311 *x - 0.9033107255311164

```

\section*{Regression Line}
def regression_function(model):
return lambda \(x\) : x * model.coef_[0] + model.intercept_
regression = regression_function(model)
regression(1)
plt.figure(figsize \(=(20,6)\) )
plt.scatter(x, y);
xfit \(=\) np.linspace \((-1,11\), num=50 \()\)
plt.plot(xfit, regression(xfit))


\section*{Regression Line}

Linear regression is simple
Other models are not so simple
Let the model compute the regression line
xfit \(=\) np.linspace \((-1,11\), num=50) \# 50 evenly spaced points from -1 to 11
Xfit \(=\) xfit[:, np.newaxis] \# need 2D
yfit \(=\) model.predict(Xfit)
plt.figure(figsize \(=(20,6)\) )
plt.scatter(x, y)
plt.plot(xfit, yfit);


\section*{How does it compare to SNS Regression Line?}
import seaborn as sns
sns.Implot( \(x=\) 'x', \(y=' y '\), data=pd.DataFrame(\{'x': \(x, ~ ' y ': y\}))\)
plt.plot(xfit, yfit)


\section*{Is Linear Regression the Correct Model?}

Scikit Learn Generalized Linear Models

Ordinary Least Squares
Ridge Regression
Lasso
Multi-task Lasso
Elastic Net
Multi-task Elastic Net
Least Angle Regression
LARS Lasso
Orthogonal Matching Pursuit (OMP)
Bayesian Regression
Logistic regression
Stochastic Gradient Descent - SGD
Huber Regression
Polynomial regression

\section*{Overfitting}

Model describes random error or noise instead of the underlying relationship

Overfitting occurs when a model is excessively complex,
Too many parameters relative to the number of observations


\section*{Is Linear Regression the Correct Model?}

Residuals
\(\mathrm{R}^{2}\)

\section*{Residuals}

Residual = Observed value - Predicted value
rng = np.random.RandomState(42)
\(x=10\) * rng.rand(50)
\(y=2\) * \(x-1\) + rng.randn(50) \# Observed values
X \(=x[\) [,np.newaxis]
residual \(=\mathrm{y}\) - model. \(\mathrm{predict}(\mathrm{X})\)
plt.scatter(X,residual)
Residuals
Should be randomly distributed Sum = 0 mean \(=0\)

\section*{Coefficient of Determination \(\mathbf{R}^{\mathbf{2}}\)}
\(\mathrm{R}^{2}=1-\frac{\operatorname{var}(\varepsilon)}{\operatorname{var}(\mathrm{Y})} \quad \mathrm{e}=\) residuals \(\quad \mathrm{Y}=\) observed data

Measure of how much the independent variable explains the variance of the data
from sklearn.metrics import r2_score
0.9749140085676858
r2_score(y, model.predict(X))

\section*{Simple Regression and \(\mathbf{R}^{\mathbf{2}}\)}

If only one independent variable
\[
\left.R^{2}=r^{2} \quad \text { (Pearson's Correlation squared }\right)
\]


I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

\section*{Multiple Linear Regression}

Using multiple independent variables

Amazon's daily revenue depends on
Latency
Price
Steps needed to order
Page layout
Relevant suggestions
Search results
Font sizes
Color
Shipping costs

\section*{Two Independent Variable Example}
\[
y=f(x, z)=2^{*} x+3^{*} z-1
\]
rng = np.random.RandomState(42)
\(x=10\) * rng.rand(50)
\(z=10\) * rng.rand(50)
\(y=2\) * \(x+3\) * \(z-1+\operatorname{rng} \cdot\) randn(50) \#faking data
plt.scatter( \(\mathrm{x}, \mathrm{y}\) )

plt.scatter(z, y)


\section*{Fitting the Model}
```

from sklearn.linear_model import LinearRegression
model2 = LinearRegression(fit_intercept=True)
model2.fit(pd.DataFrame({'x':x,'z':z}), y)
model2.coef
array([1.86706076, 2.96638451])
model.intercept
-0.3049071881469345
Model
y = 1.86706076 *x + 2.96638451 *z - 0.3049071881469345
Actual

$$
f(x, z)=2^{*} x+3^{*} z-1
$$

```

\section*{Residuals}
predicted = model2.predict(pd.DataFrame(\{'x':x,'z':z\}))
residuals2 = y - predicted
residuals2.mean() \# 0.0831037982077566
residuals2.sum()
\# 4.1551899103878

\section*{Residuals}
plt.scatter(x,residuals2)

plt.scatter(z,residuals2)


\section*{Two Independent Variable Example}

Model With 50 Data points
\(y=1.86706076\) * \(x+2.96638451\) * \(z-0.3049071881469345\)

Actual
\(f(x, z)=2^{*} x+3^{*} z-1\)

Model With 100 Data points
\(y=1.96582747\) * \(x+3.07193114\) * \(z-1.0893899635499302\)

Model With 1000 Data points
\(y=1.99662862\) * \(x+2.99969211\) *z-0.9689826659919589

\section*{\(\mathbf{R}^{\mathbf{2}}\) - Coefficient of Multiple Determination}

When have multiple independent variables \(\mathrm{R}^{2}\) has new name

Adding an other independent variable

Contributes to explain dependent variable
\(\mathrm{R}^{2}\) increases

Has nothing to do with dependent variable
\(\mathrm{R}^{2}\) increases```

