CS 649 Big Data: Tools and Methods Fall Semester, 2021 Doc 13 Clustering Mar 4, 2021

Copyright ©, All rights reserved. 2021 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/openpub/) license defines the copyright on this document.

Clustering

Unsupervised machine learning

Algorithm "looks" for structure in the data

Clustering

Groups data that is similar to each other in some way

Uses for Clustering

Bioinformatics

Sequence analysis

Group sequences into gene families

Human genetic clustering

Infer ancestral background

Market research

Partition consumers into market segments based on surveys & test panels

Image segmentation

Divide image into regions for border detection or object recongnition

Recommender Systems

Examples

Last.fm

Pandora Radio

Netflix recommendations

Amazon recommendations

Facebook friend recommendations

Machine Learning algorithms used

Bayesian Classifiers

Cluster analysis

Decision trees

Artificial neural networks

Clustering

Clustering algorithms group data based on distance

What is distance?

Normalizing data affects distance

Distance

Distances.jl

Euclidean distance

Squared Euclidean distance

Periodic Euclidean distance

Cityblock distance

Total variation distance

Jaccard distance

Rogers-Tanimoto distance

Chebyshev distance

Minkowski distance

Hamming distance

Cosine distance

Correlation distance

Chi-square distance

Kullback-Leibler divergence

Generalized Kullback-Leibler divergence

Rényi divergence

Jensen-Shannon divergence

Mahalanobis distance

Squared Mahalanobis distance

Bhattacharyya distance

Hellinger distance

Haversine distance

Mean absolute deviation

Mean squared deviation

Root mean squared deviation

Normalized root mean squared deviation

Bray-Curtis dissimilarity

Bregman divergence

using Distances

```
euclidean(x, y) = sqrt(sum((x - y) .^2))
 euclidean([2,0],[0,2]) == 2.83
cityblock(x, y) = sum(abs(x - y))
 cityblock([2,0],[0,2]) == 4
hamming(x, y) = sum(x .!= y)
 hamming([2,0],[0,2]) == 2
 hamming([9,0],[0,2]) == 2
cosine_dist(x,y) = cos(x,y)
 cosine_dist([2.0,0.0], [0.0,2.0])) == 1
 cosine_dist([2.0,0.0], [10.0,0.0])) == 0
jaccard(x, y) = 1 - sum(min(x, y)) / sum(max(x, y))
 jaccard([2,0],[0,2]) == 1
```


8

Normalization

9

Clustering relies on distance between data points which scale can affect

Normalization

Clustering relies on distance between data points which scale can affect

Max-min

Mean-standard deviation

Sigmoidal normalization

Softmax

Max-min

```
min_max_norm(x) = (x - minimum(x)) / (maximum(x) - minimum(x))

maps data \rightarrow [0, 1]

Cheap to compute

Outliers compress the data
```

1	0.0	1	0.0
1		2	0.00050025
2	0.0526316	3	0.0010005
3	_ 0.105263	4 ———	
4	0.157895	4	0.00150075
		9	0.004002
9	0.421053	20	0.00950475
20	1.0		
		2000	1.0

Mean-standard deviation (Z-score)

```
mean\_std\_norm(x) = (x - mean(x)) / std(x)
```

Unbounded, but mainly in [-3, 3] Contains negative numbers Has outlier issues

1	-0.766406
2	-0.62706
3	0.487713
4	-0.348367
9	0.348367
20	1.88118

1	-0.385249
2	-0.383922
3	-0.382595
4 ——	-0.381268
9	-0.374632
20	-0.360034
2000	2.2677

12

Sigmoidal Normalization

 $sigmoidal_norm(x) = 1 ./ (1 + exp(-x))$

Range (0, 1) Not very useful as given in text

1	0.731059
2	0.880797
3	0.952574
4	0.982014
9	0.999877
20	1.0

1	0.731059
2	0.880797
3	0.952574
4	0.982014
9	0.999877
20	1.0
2000	1.0

13

Logistic Function

logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))

c = 0k = 1, 0.5, 0.25, 0.1

Range (0, 1)

Need to select k & c

Commonly used in neural networks

Bases of Elo ranking system

Logistic Function

logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))

	k= 1, c= 0	k= 0.5, c= 0	k= 0.2, c= 0	k= 0.2, c= 9
1	0.731059	0.622459	0.549834	0.167982
2	0.880797 0.952574	0.731059 0.817574	0.598688 0.645656	0.197816 0.231475
4	0.982014	0.880797	0.689974	0.268941
9	0.999877	0.989013	0.858149	0.5
20	1.0	0.999955	0.982014	0.90025
1	0.731059	0.622459	0.549834	0.167982
2	0.880797	0.731059	0.598688	0.197816
3	0.952574	0.817574	0.645656	0.231475
4	0.982014	0.880797	0.689974	0.268941
9	0.999877	0.989013	0.858149	0.5
20	1.0	0.999955	0.982014	0.90025
2000	1.0	1.0	1.0	1.0

Softmax Normalization

```
softmax_norm(x) = 1 ./(1 + exp(-(x - mean(x))/std(x)))
```

Range (0, 1)

mean -> 0.5

Near linear within standard deviation of mean Keeps outliers, but reduces their influence

1	0.317257	1	0.404861
2	0.348178	2	0.405181
3	_ 0.380432	3	0.405501
4	0.413779	4	0.405821
9	0.586221	9	0.407422
20	0.867747	20	0.410951
		2000	0.906166

16

Text Normalization

Extracting text from xml, json

tokenizing

Punctuation & non text characters ()

Non relavent word the, and, this, ...

Root (stem) words like, liked

Stem Words

worked working

workers

sleep sleeping slept

Text & Distance - Jaccard Distance

Let A and B be sets

The Jaccard index or Jaccard similarty coefficient is

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Range [0, 1]

If A == B then J(A,B) = 1

Jaccard Distance for sets

$$dj(A, B) = 1 - J(A, B)$$

Example

```
a = StringDocument("Music is the food of love")b = StringDocument("War is the locomotive of history")c = StringDocument("It's lovely that you're musical")
```

```
jaccard_dist(a,b) == 0.667
jaccard_dist(a,c) == 1.00
```

Example Revisited

```
a = StringDocument("Music is the food of love")
b = StringDocument("War is the locomotive of history")
c = StringDocument("It's lovely that you're musical")

normalize_text!(a)
normalize_text!(b)
normalize_text!(c)

jaccard_dist(a,b) == 1.00
jaccard_dist(a,c) == 0.333
```

Text as Vectors - Term Frequency

Find all unique words in your text - say n words

Map each word to a number from 1 - n

That number becomes the words location in a vector

Count the number of time the word appears

Place that number in the vectors location

Example

"Music is the food of love"

"War is the locomotive of history"

"It's lovely that you're musical"

"music food love"

"war locomotive histori"

"love music"

"food" = 1

"histori" = 2

"locomotive" = 3

"love" = 4

"music" = 5

"war" = 6

"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love music" \rightarrow [0, 0, 0, 1, 1, 0]

Cosine Distance

$$\cos(0) = 1.0$$

24

$$cos(deg2rad(90)) = 6.12e-17$$

$$cos(deg2rad(180)) = -1.00$$

Cosine Distance

"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love music" -> [0, 0, 0, 1, 1, 0]

"music food love" verses "war locomotive histori"

$$cosine_dist([1, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]) = 1.00$$

"music food love" verses "love music"

$$cosine_dist([1, 0, 0, 1, 1, 0]), [0, 0, 0, 1, 1, 0]) = 0.184$$

Types of Clustering

Center-based Cluster Algorithms

k-nearest neighbor

k-means

k-medoids

Affinity propagation

Density clusters
DBSCAN

K-Clustering - Basic Idea

Pick k points to be start of each cluster

- 1. Add each data point to the nearest cluster
- 2. Readjust the k points for each cluster

Repeat 1 & 2 until clusters are stable or reach given number of iterations

K-means

Select k points m_1^1 , m_2^1 , ..., m_k^1

For each data point x assign it to the mean that it is closest to form k clusters Use square of the (Euclidiean) distance

For each cluster compute the mean of that cluster Get new means $m_1^2,\,m_2^2,\,...\,,\,m_k^2$

If points changed clusters repeat

Example

K-mediods

Differs from K-means in two ways

Centers of each cluster is data point nearest the mean point

Uses distance matrix so can use any definition of distance

Sample Dataset

xclara = dataset("cluster", "xclara"

K-Means k= 3

Issues

Picking initial means

Picking number of clusters

Measuring how good the clusters are

Normalization of data

What is distance

Varying k

k-Means & Clusters with no center

k-Means & Clusters with no center

from sklearn.datasets import make_moons
X, y = make_moons(200, noise=.05, random_state=0)
plt.scatter(X[:, 0], X[:, 1]);

k-Means & Clusters with no center

from sklearn.cluster import KMeans import matplotlib.pyplot as plt

k-clustering Algorithms

Assume that

Each cluster is centered around a point

Clusters are convex

You know how many clusters there should be

SpectralClustering

Transforms data then uses K-menas useful when the structure of the individual clusters is highly non-convex

Picking initial Seeds for Clusters

Clustering algorithms try to find the best clusters

But can get stuck in local extrema

DBSCAN

Density-based spatial clustering of applications with noise

Groups points together that are closely packed together

Developed in 1996

One of most commonly used clustering algorithms

Most cited in scientific literature

4I D13

Terms

Parameters **E-** distance

minPts

p is a core point if

There are minPts within distance € of p including p

Directly reachable points

All points within distance € of a core point p are directly reachable from p

q is reachable from p if

There is a path p_1 , ..., p_n with $p_1 = p$ and $p_n = q$, p_{i+1} is directly reachable from p_i

Outlier

Points not reachable from any other points

A core point and all points reachable from it form a cluster

Example - minPts = 4

DBSCAN Issues

€ & minPts determine the clusters

No need to determine number of clusters

Robust to outliers

Can be implemented with runtime O(n log n)

Can not handle data with varying densities

High demensional data causes problems with selecting € & minPts

DBSCAN with varying eps

$$eps = 6$$

minpts = 10

$$eps = 7$$

minpts = 10

$$eps = 8$$

minpts = 10

DBSCAN & Non centered clusters

Curse of Dimensionality

As dimensions rise every point tends to become equally far from every other point

Reducing Dimensions

Some dimensions in a data set have less variation that others

So contribute less

These dimensions may not be the ones given in the data

PCA - Principle Component Analysis

Used to reduce the dimensionality of data

Changes the dimension of the data so

First dimension has the greatest variance Second dimension has second greatest variance

. . .

Can then select first K dimensions to work with

Data is transformed into different coordinate system

Example

http://setosa.io/ev/principal-component-analysis/

Example - Generate Data

```
import numpy as np
from matplotlib import pyplot as plt
plt.figure(figsize=(20,6))
rng = np.random.RandomState(1)
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T
plt.scatter(X[:, 0], X[:, 1])
plt.axis('equal');
```


Example - Compute PCA

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
                        Vector of two Components
print(pca.components_)
                                 [[-0.94446029 -0.32862557]
                                  [-0.32862557 \quad 0.94446029]]
                     How much variation on each axis
print(pca.explained_variance_) [0.7625315 0.0184779]
                            Center of Data
print(pca.mean_)
                                 [ 0.03351168 - 0.00408072]
```

New Axis

If we project all data on the long axis
1 dimensional data
76% of variation

Drawing Vector

```
def draw_vector(v0, v1, ax=None):
  ax = ax or plt.gca()
  arrowprops=dict(arrowstyle='->',
            linewidth=2,
            shrinkA=0, shrinkB=0)
  ax.annotate(", v1, v0, arrowprops=arrowprops)
# plot data
plt.figure(figsize=(20,6))
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
for length, vector in zip(pca.explained_variance_, pca.components_):
  v = vector * 3 * np.sqrt(length)
  draw_vector(pca.mean_, pca.mean_ + v)
plt.axis('equal');
```

Creating one Moon

```
from sklearn.datasets import make_moons

X, y = make_moons(200, noise=.05, random_state=0)

moon = X[y == 0]

plt.figure(figsize=(20,6))

plt.scatter(moon[:, 0], moon[:, 1]);

from sklearn.decomposition import PCA

pca_moon = PCA(n_components=2)

pca_moon.fit(moon)

print(pca_moon.explained_variance_)
```