
CS 649 Big Data: Tools and Methods
Spring Semester, 2021
Doc 19 Running Spark

Apr 1, 2021
Copyright ©, All rights reserved. 2021 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Virus infection Simulation

2

Assumptions
Infect 10% of people you meet
Contact 20 people per day

0%
Immune

50%
Immune

80%
Immune

1 1 1

2 1 0

6 2 1

18 4 1

54 8 1

162 16 2

486 32 2

1,458 64 3

4,374 128 4

13,122 256 6

39,366 512 8

118,098 1,024 12

354,294 2,048 16

New Cases Each Day

Contact
5 People

Contact
10 People

Contact
20 People

Contact
25 People

1 1 1 1

1 1 2 3

1 2 6 9

1 4 18 31

2 8 54 107

3 16 162 375

4 32 486 1,313

6 64 1,458 4,596

9 128 4,374 16,085

13 256 13,122 56,297

19 512 39,366 197,039

29 1,024 118,098 689,637

43 2,048 354,294 2,413,729

Assumptions
Infect 10% of people you meet
0% Immune

New Cases Each Day

Why We Sleep

3

By Mathew Walker
Professor of neuroscience and psychology
Director of the Center for Human Sleep Science at the University of California, Berkeley

Effect of lack of sleep
Immune system
Learning

Installing PySpark

4

Instructions
https://spark.apache.org/docs/latest/api/python/getting_started/install.html

Short Version:

 conda install pyspark

https://spark.apache.org/docs/latest/api/python/getting_started/install.html
https://spark.apache.org/docs/latest/api/python/getting_started/install.html

Then We Can Run

5

 from pyspark.sql import SparkSession
 spark = SparkSession.builder \
 .master("local") \
 .appName("Print") \
 .getOrCreate()
 print(spark.range(5000).selectExpr("sum(id)").collect())

Spark Properties

6

name
master
logging
memory
etc

https://spark.apache.org/docs/latest/configuration.html

name - displayed in Spark Master Web page

master

7

Master URL Meaning

local Run Spark locally with one worker thread.

local[K] Run Spark locally with K worker threads

local[K,F] Run Spark locally with K worker threads and F maxFailures

local[*]
Run Spark locally with as many worker threads as logical cores on

your machine.

local[*,F]
Run Spark locally with as many worker threads as logical cores on

your machine and F maxFailures.

spark://HOST:PORT Connect to the given Spark standalone cluster master.

spark://
HOST1:PORT1,HOST2:PORT2

Connect to the given Spark standalone cluster with standby masters
with Zookeeper.

mesos://HOST:PORT Connect to the given Mesos cluster.

yarn Connect to a YARN cluster in client or cluster mode

spark://HOST:PORT
spark://HOST1:PORT1,HOST2:PORT2
mesos://HOST:PORT

Installing PySpark - Non-Notebook

8

https://spark.apache.org/downloads.html

Download Spark

Put SPARK/bin and SPARK/sbin on your path

from __future__ import print_function
def print5000():
 from pyspark.sql import SparkSession
 spark = SparkSession.builder \
 .master("local") \
 .appName("Print") \
 .getOrCreate()
 print(spark.range(5000).selectExpr("sum(id)").collect())

if __name__ == "__main__":
 print5000()

printExample.py ->spark-submit ./printExample.py

Amazon Elastic Map-Reduce (EMR)

9

Hadoop, Hive, Spark, etc on Cluster

Predefined set of languages/tools available

Can create cluster of machines

https://aws.amazon.com
Create new account
Get 12 months free access

AWS Free Tier

10

12 months free

EC2 - compute instances
740 hours per month
Billed in hour increments
Billed per instance

S3 - storage
5 GB
20,000 Get requests

RDS - MySQL, PostgresSQL, SQL Sever
20 GB
750 hours

EC2 Container - Docker images
500 MB

AWS Educate

11

https://aws.amazon.com/education/awseducate/

SDSU is an institutional member

Students get $100 credit

EC2 Pricing

12

Price Per Hour

On Demand Spot

a1.medium $0.0255 $0.0050

t3.nano $0.0047 $0.0016

m5.large $0.0960 $0.0202

c5.large $0.0850 $0.0200

p3.2xlarge
(GPU) $3.0600 $0.9413

Basic Outline

13

Develop & test Spark locally

Upload program file & data to S3

Configure & launch cluster
AWS Management Console
AWS CLI
SDKs

Monitor cluster

Make sure you terminate cluster when done

Simple Storage System - S3

14

Files are stored in buckets

Bucket names are global

Supports
s3 - files divided in to block
s3n

Accessing files
S3 console
Third party
REST
Java, C#, etc

Amazon S3

15

S3 Creating a Bucket

16

S3 Costs

17

AWS Free Usage Tier

New AWS customers receive each month for one year
5 GB of Amazon S3 storage in the Standard Storage class,
20,000 Get Requests,
2,000 Put Requests, and
15 GB of data transfer out

Standard Storage
Standard - Infrequent

Access Storage Glacier Storage

First 50 TB / month $0.023 per GB $0.0125 per GB $0.004 per GB

Next 450 TB / month $0.022 per GB $0.0125 per GB $0.004 per GB

Over 500 TB / month $0.021 per GB $0.0125 per GB $0.004 per GB

S3 Objects

18

Objects contain
Object data
Metadata

Size
1 byte to 5 gigabytes per object

Object data
Just bytes
No meaning associated with bytes

Metadata
Name-value pairs to describe the object
Some http headers used

Content-Type

S3 Buckets

19

Namespace for objects

No limitation on number of object per bucket

Only 100 buckets per account

Each bucket has a name
Up to 255 bytes long
Cannot be same as existing bucket name by any S3 user

Bucket Names

20

Bucket names must
Contain lowercase letters, numbers, periods (.), underscores (_), and dashes (-)
Start with a number or letter
Be between 3 and 255 characters long
Not be in an IP address style (e.g., "192.168.5.4")

To conform with DNS requirements, Amazon recommends
Bucket names should not contain underscores (_)
Bucket names should be between 3 and 63 characters long
Bucket names should not end with a dash
Bucket names cannot contain dashes next to periods (e.g.,

"my-.bucket.com" and "my.-bucket" are invalid

Key

21

Unique identifier for an object within a bucket

Object Url

 http://buckerName.s3.amazonaws.com/Key

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl

Bucket = doc
Key = 2006-03-01/AmazonS3.wsdl

Access Control Lists (ACL)

22

Each Bucket has an ACL
Determines who has read/write access

Each Object can have an ACL
Determines who has read/write access

ACL consists of a list of grants

Grant contains
One grantee
One permission

S3 Data Consistency Model

23

Updates to a single object at a key in a bucket are atomic

But a read after a write may return the old value
Changes may take time to progate

No object locking
If two writes to same object occur at the same time
The one with later timestamp wins

Running Program on AWS EMR

24

Make sure program runs locally

Create program file containing code

Create s3 bucket(s) for
program file file
logs
input
output

Upload program & data files to s3

Spark Components

25

Terms

26

Application
User program built on Spark
Driver program + executors

Driver program
The process running the main() function of the application and creating the SparkContext

Cluster manager
External service for acquiring resources on the cluster

Deploy mode
Where the driver process runs
"cluster" - the driver inside of the cluster
"client" - the driver outside of the cluster

Terms

27

Executor
A process launched for an application on a worker node
Runs tasks and keeps data in memory or disk storage across them.
Each application has its own executors

Task
A unit of work that will be sent to one executor

Job
A parallel computation consisting of multiple tasks
Gets spawned in response to a Spark action (e.g. save, collect)

Stage
Job divided into smaller tasks called stages
Depend on each other

Test Program 1 - Pi

28

from random import random
from operator import add

from pyspark import SparkContext

if __name__ == "__main__":
 sc = SparkContext(appName="PythonPi")
 partitions = 3
 n = 100000 * partitions

 def f(_):
 x = random() * 2 - 1
 y = random() * 2 - 1
 return 1 if x ** 2 + y ** 2 < 1 else 0

 count = sc.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
 print("Pi is roughly %f" % (4.0 * count / n))

 sc.stop()

Designed to have no
Command line dependancies
No input or output files

My S3 Buckets

29

My S3 Buckets

30

My S3 Buckets

31

Spark on AWS - EMR Console

32

Using Quick Options

33

34

Use Advanced Options

Advanced Options

35

Advanced Options

36

Advanced Options

37

Advanced Options

38

Cluster Created - Either Quick or Advanced

39

Adding a Step

40

41

Modes - client or cluster
Either works
client mode gives access to standard out

42

43

Example 2

44

def flight(input, output):
 import pyspark.sql.functions as F
 from pyspark.sql import SparkSession
 spark = SparkSession.builder \
 .appName("Fight") \
 .getOrCreate()

 flight_df = spark.read.json(input)

 grouped_df = flight_df.groupBy('DEST_COUNTRY_NAME').agg(F.sum('count'))
 grouped_df.write.format('csv').save(output)

def files_from_args():
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('-i', '--input', default='input')
 parser.add_argument('-o', '--output',default='output')
 args = parser.parse_args()
 return (args.input, args.output)

if __name__ == "__main__":
 inputfile, outputfile = files_from_args()
 flight(inputfile, outputfile)

S3 Buckets

45

Adding a Step

46

S3 output

47

Warning on AWS

48

It can take 5-10 minutes to start cluster

Logs do not show your logging statements

When you configure Steps incorrectly they fail
Error messages are not very helpful

SSH to your Master Node

49

Create Amazon EC2 Key pair

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-
pairs.html#having-ec2-create-your-key-pair

Instructions

Open EC2 Dashboard - Select Key Pairs

SSH to your Master Node

50

In Create Cluster - Quick Options

SSH to your Master Node

51

Click for Instructions

Command-line Tools

52

Open-source command-line tool for launching Apache Spark clusters

https://github.com/nchammas/flintrock

Flintrock

aws cli

Amazon's command line tool

https://aws.amazon.com/cli/

Generating the Command Line

53

54

Hadoop Ecosystem

55

Hadoop
HDFS
MapReduce
YARN

Tez
Pig
Hive
Hbase
Sqoop
Oozie
Falcon
Spark
ZooKeeper
Mahout
Phoenix
BigTop
+ others

Apache Pig

56

Programming Map-Reduce can be low level

Apache Pig - high-level platform for creating programs for Hadoop

Pig Latin

 input_lines = LOAD '/tmp/my-copy-of-all-pages-on-internet' AS (line:chararray);
 words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;
 filtered_words = FILTER words BY word MATCHES '\\w+';
 word_groups = GROUP filtered_words BY word;
 word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS
 count, group AS word;

 ordered_word_count = ORDER word_count BY count DESC;
 STORE ordered_word_count INTO '/tmp/number-of-words-on-internet';

Apache Hive

57

SQL is common way to interact with data

Hive provides SQL like query language for HDFS, Amazon S3 data

HiveQL - converted into MapReduce

DROP TABLE IF EXISTS docs;
CREATE TABLE docs (line STRING);
LOAD DATA INPATH 'input_file' OVERWRITE INTO TABLE docs;
CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
 (SELECT explode(split(line, '\s')) AS word FROM docs) temp
GROUP BY word
ORDER BY word;

Apache HBase

58

BigTable for Hadoop

Non-relational distributed database

Fault-tolerant way of storing large quantites of sparse data

Apache Sqoop

59

People have data in non-hadoop databases

Sqoop
Transferring data between relational databases & Hadoop

Apache Phoenix

60

But SQL is common

Phoenix
Massively parallel relational database for Hadoop
Uses HBase to store data

Apache Spark

61

Hadoop has latency issues - reads data from disk
MapReduce is not conducive to solving all problems

Spark
Uses distributed shared memory: Resilient distributed dataset (RDD)
Iterative algorithms
Implemented in Scala

Spark Core
Spark SQL

Dataframes & SQL
Spark Streaming
Spark MLlib

Machine learning

Apache Mahout

62

Hadoop does not have machine learning libraries

Mahout
Environment for quickly creating scalable machine learning applications
Samsara - R-line syntax & environment

Apache Flink, Apache Storm

63

Hadoop does batch jobs
Spark streaming has delays

Fling & Storm
Each calin to have high throughput and low latency streaming

Distributed Variables

64

Broadcast
Read-only data shared among workers

Accumulator
Write only by workers
Read only on master

Broadcast Example

65

from pyspark.sql import SparkSession

spark = SparkSession\
 .builder\
 .appName("variables")\
 .getOrCreate()

courseSize = 45
courseSizeBroadcast = spark.sparkContext.broadcast(courseSize)

courseSizeBroadcast.value

data = spark.sparkContext.parallelize((1,2,3,4,5,6,7,8), 2)
data.map(lambda x: x + courseSizeBroadcast.value).collect()

Using ComplexType

66

sampleMap = {'a': 10,'bat':1 }
sampleBroadCast = spark.sparkContext.broadcast(sampleMap)
sampleBroadCast.value

67

import org.apache.spark.sql.SparkSession
val blockSize = "4096"
val spark = SparkSession.builder().
 appName("Broadcast Test").
 config("spark.broadcast.blockSize", blockSize).
 getOrCreate()

val sc = spark.sparkContext
val slices = 2
val num = 10000000

val arr1 = (0 until num).toArray

for (i <- 0 until 3) {
 println("Iteration " + i)
 println("===========")
 val startTime = System.nanoTime
 val barr1 = sc.broadcast(arr1)
 val observedSizes = sc.parallelize(1 to 10, slices).map(_ => barr1.value.length)
 observedSizes.collect().foreach(i => println(i))
 println("Iteration %d took %.0f milliseconds".format(i, (System.nanoTime - startTime) / 1E6))
}

Accumulator Example

68

from pyspark.sql import SparkSession

spark = SparkSession\
 .builder\
 .appName("variables")\
 .getOrCreate()

counter = spark.sparkContext.accumulator(0)
def count(item):
 global counter
 print("item: ", item.id)
 counter.add(1)

df = spark.range(16)
smaller = df.coalesce(4)
smaller.foreach(count)
counter.value

16

Output

Accumulator
add()
value

Numbers only

Can create custom accumulators

Machine Learning in Spark

69

MLlib

RDD-based
org.apache.spark.mllib
Maintenance mode

DataFrame based (Spark ML)
org.apache.spark.ml
Pipelines

Inspired by Python scikit-learn

Classification
Regression
Clustering
Collaborative Filtering
Dimension reduction
Linear Algebra
Statistics

http://spark.apache.org/docs/latest/ml-guide.html

70

Python Examples

71

$SPARK_INSTALL_DIR/examples/src/main/python/ml

72

aft_survival_regression.py
als_example.py
binarizer_example.py
bisecting_k_means_example.py
bucketed_random_projection_lsh_example.py
bucketizer_example.py
chi_square_test_example.py
chisq_selector_example.py
correlation_example.py
count_vectorizer_example.py
cross_validator.py
dataframe_example.py
dct_example.py
decision_tree_classification_example.py
decision_tree_regression_example.py
elementwise_product_example.py
estimator_transformer_param_example.py
feature_hasher_example.py
fpgrowth_example.py
gaussian_mixture_example.py
generalized_linear_regression_example.py
gradient_boosted_tree_classifier_example.py
gradient_boosted_tree_regressor_example.py
imputer_example.py
index_to_string_example.py

index_to_string_example.py
isotonic_regression_example.py
kmeans_example.py
lda_example.py
linear_regression_with_elastic_net.py
linearsvc.py
logistic_regression_summary_example.py
logistic_regression_with_elastic_net.py
max_abs_scaler_example.py
min_hash_lsh_example.py
min_max_scaler_example.py
multiclass_logistic_regression_with_elastic_net.py
multilayer_perceptron_classification.py
n_gram_example.py
naive_bayes_example.py
normalizer_example.py
one_vs_rest_example.py
onehot_encoder_estimator_example.py
pca_example.py
pipeline_example.py
polynomial_expansion_example.py
prefixspan_example.py
quantile_discretizer_example.py
random_forest_classifier_example.py
random_forest_regressor_example.py

