CS 696 Applied Large Langauge Models
Spring Semester, 2025
Doc 2 NN Review
Jan 21, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Acknowledgment

Some slides in this lecture are from Stanford’s
Speech and Language Processing (3rd ed. draft)
Dan Jurafsky and James H. Martin

https://web.stanford.edu/~jurafsky/slp3/

Language Model History

Linguists were building models by hand
1980’s Statistical Models

2000s - 2010s neural language models
2017 - Transformer Architecture

2018 - Large Language Models

Neural Network Model Basic Idea

Given a sequence of words, predict the next word
Example:
It was a dark and stormy X

It was a dark and stormy X

X Score
night 0.894
evening 0.045
day 0.039
morning 0.009

Attention

The chicken didn’t cross the road because it

The chicken didn’t cross the road because it was too
tired

The chicken didn’t cross the road because it was too
wide

Attention is All You Need

2017 paper from Google

Introduced Transformer Architecture
Bases for Large Language Models
Uses context of a word

Before and after

This is in your brain

Cell body
Axon Telodendria

/" §_ !

Nucleus

Synaptic terminals

Axon hillock

v \
Golgi apparatus

Endoplasmic
reticulum

Mitochondrion Dendrite

Dendritic branches

By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?
curid=28761830

Neural Network Unit

Output value

Non-linear transform

Weighted sum

Weights
Input layer X

Neural unit

Take weighted sum of inputs, plus a bias
z:b+2wixi
Z=w-x+b

Instead of just using z, we'll apply a nonlinear activation

function f:

Non-Linear Activation Functions

1.0

Sigmoid =1/(14e)

0.6

y=0(z)=

00g s —4 -2

Final function the unit is computing

1
B 1 +exp(—(w-x+b))

y=0(w-x+Db)

Final unit again

Output value y

Non-linear activation function

Weighted sum

Weights
Input layer X

An example

Suppose a unit has:

w=[0.2,0.3,0.9]
b= 0.5
What happens with input x:

x=10.5,0.6,0.1]
1
y=0(w-x+b)= |+ o—(wxth)
1 1
1_|_e—(.S*.2+.6*.3—|—.1>|<.9—|—.5) — 1—|—€_0‘87 — .70

Non-Linear Activation Functions besides sigmoid

Most Common:
10

1.0
eZ . e_Z
05 Y= et t+e? s Y= ma.X(Z,O)
S 0.0 Z o
+ S
I [
> =
—0.5 _s5
1.5 =5 0 5 10 1075 5 0 5 10
tanh RelU

Rectified Linear Unit

The XOR problem

Minsky and Papert (1969)

Can neural units compute simple functions of input?

AND OR XOR
x1 x2|y x1 x2|y x1 x2 |y
O 0 |0 ® 0 |0 O 0 |0
® 1 |0 ® 1 |1 O 1 |1
1 0 |0 1 0 |1 1 0 |1
1 1 |1 1 1 |1 1 1 |0

Perceptrons

A very simple neural
« Binary output (0

unit
or 1)

« No non-linear activation function

-b <0

] 0, fw-x+
YT 1, ifwex-

-b >0

Easy to build AND with perceptrons

y_{O, ifw-x+b<0

1, ifw-x+b>0 AND
x1 X2 y
0 0 0
XI\W 0 1 0
1 1 0 0
X130
’ _1/ 1 1 1
-

b

y—{O’ fw-x+b<0

1, ifw-x+b>0 wX+b=0
letw=1
x1+x2+b=0

x1=-b-x2

0, fw-x+b5<0
Y=V 1, ifw-x+b>0

AND

x1 X2

R[] O] O
RO~]| O

RO O] O|I<

v

0, ifw-x+b<0
1, fw-x+b>0

OR
x1 X2 y
0 0 0
0 1 1
1 0 1
1 1 1
X(_ W

1
10

0

e

Floating Point Operations are Expensive

Early 2023, ChatGPT's daily electricity usage
560 MWh per day

y_{O, itw-x+b<0

1, ifw-x+b>0 XOR
x1 X2 y
0 0 0
A 0 1 1
1 0 1
1 » o 1 1 0
0 O @ >

Why? Perceptrons are linear classifiers

Perceptron equation given x; and x,, is the equation of a line
wx, T wyx, +b=0

(in standard linear format: x, = (—w,/w,)x, + (=b/w,))

This line acts as a decision boundary

« Oifinputis on one side of the line
« 1if on the other side of the line

Decision boundaries

X X
\X\zn 2, 2y
NORNE O I ® 1 @ O
DY NS 9
0 O O L 0 Oy 0 O o—
0 1) 0 N1 0 1
a) Xl AND X2 b) Xl OR X2 C) Xl XOR X2

XOR is not a linearly separable function!

Rectified Linear Unit - ReLU

S 5 / y = max(z,0)
7o
=

=10 -5 0 5 10

Solution to the XOR problem

XOR can't be calculated by a single perceptron
XOR can be calculated by a layered network of units.

XOR ReLU (y)
AN
x1 | x2 y 1 -2
0 | 0| 0 ReL.U /@
0 1 1 | &
1 0 1 I i I\
1 | 1 | 0 XIV }2 AN

The hidden representation h i m
<
X X,
2, 2,
1 @ O 1 o .77
0 O o 0 O——=@ -
1 7 h
0 1 0 .- 1 2 1
a) The original x space b) The new (linearly separable) hspace

(With learning: hidden layers will learn to form useful representations)

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or
MLPs) for historical reasons

Feedforward Neural Networks
g
>

Feedforward Neural Networks
‘ %
>
hy

Feedforward Neural Networks
8
F>
=P
\ /N

Final unit again

Output value y

Non-linear activation function

Weighted sum

Weights
Input layer X

Final unit again

Z=Wo X0+ W1'X1+..+Wn-"Xn

w = [we, Wi, .. wWnl

X = [Xo, X1, .. Xn]

bias

For a Layer

Wi = | WXT o(W1+XT)

W1 1
W12

W1,n1]

o(wi1-X) o(wi2-X) o(Wwisz-X) o(Wing-X)

" " @
1,1 1,3 ,
:\\\7@‘ > /

o(Ws*o(W2*o(W1+XT)))

For A Network of Layers

Recall XOR Solution XOR
using LinearAlgebra X01 XOZ %’
o(x) = max(x, 0) 0 1 1
W1=[011; 1 2 é

-111]
W2 =[1-2] RelLLU @
xorNN(x) = 0.(W2 * 0.(W1 * x)) 1/ \-2
using Test RelLU @
@test xorNN([1, 0, 0]) == [0 T ‘></' T ‘\
@test xorNN([1, 0, 1]) == [1] 1 1.1
@test xorNN([1, 1, 0]) == [1] XV } N
@test xorNN([1, O, 0]) == [O] I 2

What is a Neural Net?

RelLU @ Pictorial representation of Neural Net

This is Not a Pipe

The Treachery of Images by René Magritte

o(x) = max(x, 0)
W1=[011;
-111]
W2 =[1-2]
XxorNN(x) = o(W2 * o(W1 * x))

Downloading a Model

from transformers import AutoModelForCausalLM, AutoTokenizer

Load model and tokenizer

model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
attn_implementation='eager,
torch_dtype="auto",
trust_remote_code=True,

)

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")

A Pipeline
from transformers import pipeline

Create a pipeline

generator = pipeline(
"text-generation”,
model=model,
tokenizer=tokenizer,
return_full_text=True,
max_new_tokens=500,
do_sample=False

Running the Model

The prompt (user input / query)
messages = [

{"role": "user", "content": "Create a funny joke about chickens."}

Generate output
output = generator(messages)
print(output[0]["generated text"])

Why did the chicken join the band? Because it had the drumsticks!

Downloading a Model

from transformers import AutoModelForCausalLM, AutoTokenizer

Load model and tokenizer

model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
attn_implementation="eager,
torch_dtype="auto",
trust_remote_code=True,

)

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")

What was downloaded?

Topics

Architecture
Training
Input

Performance

Architecture

Number of Layers
Size of each layer
Connections
Structure of Nodes
Performance

Legend:

Layer

Componentwise Copy Concatenate

-

Training

How to determine the value of the parameters
Supervised
Unsupervised

Input

Different types and sizes
Text
Images
Sound
Video
How to encode for the NN

Performance

Memory & Time
Llama 403b

30,840,000 GPU hours to train on Nvidia h800
Microsoft - $80 Billion on Al data centers in 2025
How to run models on

Laptops

Phones

Training - Supervised

First a review of gradient descent

f(x)

Error

Systematic way to change weights
f(x1, x2) = w1*x1 + w2*x2 + b

Take derivative of activation function get gradient
Use the slope in the x1 dimension to adjust w1

Use the slope in the x2 dimension to adjust w2

How far to go?

Learning Rate

To avoid overshooting multiply the gradient by a factor - say 0.1
This is called the learning rate

Take derivative of activation function to get gradient
Use the slope in the x1 dimension * learning rate to adjust w1
Use the slope in the x2 dimension * learning rate to adjust w2

Example

import numpy as np

def loss_function(w):

return (w - 3)**2

def gradient(w):
return 2 * (w - 3)

learning_rate = 0.1
epochs =20
w=0.0
print(f"Initial weight: {w}")
for epoch in range(epochs):
grad = gradient(w)
w = w - learning_rate * grad
loss = loss_function(w)
print(f"Weight = {w:.4f}, Loss = {loss:.4f}")

Initial weight: 0.0

Initial weight: 100.0

Initial weight: 0.0 Learning Rate: 0.01
Epoch 1: Weight = 0.0600, Loss = 8.6436
Epoch 20: Weight =0.9972, Loss =4.0113

Initial weight: 100.0 Learning Rate: 0.01
Epoch 1: Weight = 98.0600, Loss = 9036.4036
Epoch 20: Weight = 67.7580, Loss =4193.5951

Initial weight: 0.0 Learning Rate: 0.1
Epoch 1: Weight = 0.6000, Loss = 5.7600
Epoch 20: Weight = 2.9654, Loss = 0.0012

Initial weight: 100.0 Learning Rate: 0.1
Epoch 1: Weight = 80.6000, Loss = 6021.7600
Epoch 20: Weight = 4.1183, Loss = 1.2507

Initial weight: 0.0 Learning Rate: 1.0

Epoch 1: Weight = 6.0000, Loss = 9.0000
Epoch 2: Weight = 0.0000, Loss = 9.0000
Epoch 3: Weight = 6.0000, Loss = 9.0000

Initial weight: 100.0 Learning Rate: 1.0

Epoch 1: Weight =-94.0000, Loss = 9409.0000
Epoch 2: Weight = 100.0000, Loss = 9409.0000
Epoch 3: Weight =-94.0000, Loss = 9409.0000

Initial weight: 0.0 Learning Rate: 10.0

Epoch 1: Weight = 60.0000, Loss = 3249.0000

Epoch 2: Weight =-1080.0000, Loss = 1172889.0000
Epoch 3: Weight = 20580.0000, Loss = 423412929.0000

Initial weight: 100.0 Learning Rate: 10.0

Epoch 1: Weight =-1840.0000, Loss = 3396649.0000
Epoch 2: Weight = 35020.0000, Loss = 1226190289.0000
Epoch 3: Weight =-665320.0000, Loss =
442654694329.0000

