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Language Model History

Linguists were building models by hand 
1980’s Statistical Models 
2000s - 2010s neural language models 
2017 - Transformer Architecture 
2018 - Large Language Models



Neural Network Model Basic Idea

Given a sequence of words, predict the next word 
Example: 
It was a dark and stormy X



It was a dark and stormy X
X Score

night 0.894

evening 0.045

day 0.039

morning 0.009



Attention

The chicken didn’t cross the road because it 

The chicken didn’t cross the road because it was too 
tired 

The chicken didn’t cross the road because it was too 
wide



Attention is All You Need

2017 paper from Google 
Introduced Transformer Architecture  
Bases for Large Language Models  
Uses context of a word 

Before and after 



This is in your brain
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By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?
curid=28761830
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Neural unit

Take weighted sum of inputs, plus a bias 

Instead of just using z, we'll apply a nonlinear activation 
function f:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term
a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
X

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector
we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = s(z) =
1

1+ e�z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.
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Final function the unit is computing7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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An example
Suppose a unit has: 

w = [0.2,0.3,0.9] 
b = 0.5 
What happens with input x: 

x = [0.5,0.6,0.1] 

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.
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7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:
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y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70
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y =
ez � e�z

ez + e�z (7.5)
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y = max(z,0) (7.6)
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Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
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tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
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signal backwards, multiplying gradients (partial derivatives) from each layer of the
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until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The
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output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the

1

1

0

XOR
x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0



Why? Perceptrons are linear classifiers

Perceptron equation given x1 and x2, is the equation of a line 

w1x1 + w2x2 + b = 0 

(in standard linear format:     x2 = (−w1/w2)x1 + (−b/w2)    ) 

This line acts as a decision boundary  
• 0 if input is on one side of the line 
• 1 if on the other side of the line 



Decision boundaries

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a)  x1 AND x2 b)  x1 OR x2 c)  x1 XOR x2

?

XOR is not a linearly separable function!



Rectified Linear Unit - ReLU
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7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)



Solution to the XOR problem

XOR can't be calculated by a single perceptron 
XOR can be calculated by a layered network of units. 

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0
XOR

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

ReLU

ReLU



The hidden representation h

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

(With learning:  hidden layers will learn to form useful representations)



Feedforward Neural Networks

Can also be called multi-layer perceptrons (or 
MLPs)  for historical reasons



Feedforward Neural Networks

x1 x2 xn0

h1,1

b

h1,2 h1,3 h1,n1

h2,1 h2,2 h2,3 h2,n2

y1 y1 yn3
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…

…
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…
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Feedforward Neural Networks



Feedforward Neural Networks

x1 x2 xn0

h1,1 h1,2 h1,3 h1,n1

h2,1 h2,2 h2,3 h2,n2

y1 y1 yn3
…

…

…
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Final unit again
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x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights
Input layer

Weighted sum

Non-linear activation function

Output value

bias



Final unit again
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x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

bias

z = w0⋅x0 + w1⋅x1 + … + wn⋅xn 

w̄ = [w0, w1, … wn] 

x ̄= [x0, x1, … xn] 

z = w̄⋅x ̄ or w̄*xT̄

a = 𝜎(w̄⋅x)̄ 

̂



For a Layer

x0

x1 x2 xn0

h1,1 h1,2 h1,3 h1,n1
…

…

𝜎(w̄1,1⋅x)̄ 𝜎(w̄1,2⋅x)̄ 𝜎(w̄1,3⋅x)̄ 𝜎(w̄1,n1⋅x)̄ 

Wo 1 = [w̄1,1 

                  w̄1,2 

                   … 

 w̄1,n1]

Wo 1*xT̄ 𝜎(Wo 1*xT̄)



For A Network of Layers

x1 x2 xn0

h1,1 h1,2 h1,3 h1,n1

h2,1 h2,2 h2,3 h2,n2

y1 y1 yn3
…

…

…

…

𝜎(Wo 3*𝜎(Wo 2*𝜎(Wo 1*xT̄)))



Recall XOR Solution

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

XOR
x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

ReLU

ReLU

σ(x) = max(x, 0) 
Wo 1 = [0 1 1; 
          -1 1 1] 
Wo 2 = [1 -2] 
xorNN(x) = σ.(Wo 2 * σ.(Wo 1 * x))

using LinearAlgebra

using Test 
@test xorNN([1, 0, 0]) == [0] 
@test xorNN([1, 0, 1]) == [1] 
@test xorNN([1, 1, 0]) == [1] 
@test xorNN([1, 0, 0]) == [0]



What is a Neural Net?

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

ReLU

ReLU Pictorial representation of Neural Net



This is Not a Pipe
The Treachery of Images by René Magritte



σ(x) = max(x, 0) 
Wo 1 = [0 1 1; 
          -1 1 1] 
Wo 2 = [1 -2] 
xorNN(x) = σ(Wo 2 * σ(Wo 1 * x))



Downloading a Model
from transformers import AutoModelForCausalLM, AutoTokenizer 

# Load model and tokenizer 
model = AutoModelForCausalLM.from_pretrained( 
    "microsoft/Phi-3-mini-4k-instruct", 
    attn_implementation='eager', 
    torch_dtype="auto", 
    trust_remote_code=True, 
) 
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") 



A Pipeline
from transformers import pipeline 

# Create a pipeline 
generator = pipeline( 
    "text-generation", 
    model=model, 
    tokenizer=tokenizer, 
    return_full_text=True, 
    max_new_tokens=500, 
    do_sample=False 
)



Running the Model
# The prompt (user input / query) 
messages = [ 
    {"role": "user", "content": "Create a funny joke about chickens."} 
] 

# Generate output 
output = generator(messages) 
print(output[0]["generated_text"])

Why did the chicken join the band? Because it had the drumsticks!



Downloading a Model
from transformers import AutoModelForCausalLM, AutoTokenizer 

# Load model and tokenizer 
model = AutoModelForCausalLM.from_pretrained( 
    "microsoft/Phi-3-mini-4k-instruct", 
    attn_implementation='eager', 
    torch_dtype="auto", 
    trust_remote_code=True, 
) 
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") 

What was downloaded?



Topics

Architecture 
Training 
Input 
Performance



Architecture

Number of Layers 
Size of each layer 
Connections 
Structure of Nodes 
Performance



Training

How to determine the value of the parameters 
Supervised 
Unsupervised



Input

Different types and sizes 
Text 
Images 
Sound 
Video 

How to encode for the NN



Performance

Memory & Time 
Llama 403b 

30,840,000 GPU hours to train on Nvidia h800 
Microsoft - $80 Billion on AI data centers in 2025  
How to run models on 

Laptops 
Phones



Training - Supervised

First a review of gradient descent 



x1

f(x)

x2 x3





Systematic way to change weights

Take derivative of activation function get gradient 

Use the slope in the x1 dimension to adjust w1 

Use the slope in the x2 dimension to adjust w2

f(x1, x2) = w1*x1 + w2*x2 + b



How far to go?



Learning Rate

To avoid overshooting multiply the gradient by a factor - say 0.1 
This is called the learning rate

Take derivative of activation function to get gradient 
Use the slope in the x1 dimension * learning rate to adjust w1 
Use the slope in the x2 dimension * learning rate to adjust w2



Example
import numpy as np 

def loss_function(w): 
    return (w - 3)**2 

def gradient(w): 
    return 2 * (w - 3)

learning_rate = 0.1  
epochs = 20  
w = 0.0            
print(f"Initial weight: {w}") 
for epoch in range(epochs): 
    grad = gradient(w)              
    w = w - learning_rate * grad     
    loss = loss_function(w)         
    print(f"Weight = {w:.4f}, Loss = {loss:.4f}")



Initial weight: 0.0 Initial weight: 100.0 

Initial weight: 0.0 Learning Rate: 0.01 
Epoch 1: Weight = 0.0600, Loss = 8.6436 
Epoch 20: Weight = 0.9972, Loss = 4.0113

Initial weight: 100.0 Learning Rate: 0.01 
Epoch 1: Weight = 98.0600, Loss = 9036.4036 
Epoch 20: Weight = 67.7580, Loss = 4193.5951

Initial weight: 0.0 Learning Rate: 0.1 
Epoch 1: Weight = 0.6000, Loss = 5.7600 
Epoch 20: Weight = 2.9654, Loss = 0.0012

Initial weight: 100.0 Learning Rate: 0.1 
Epoch 1: Weight = 80.6000, Loss = 6021.7600 
Epoch 20: Weight = 4.1183, Loss = 1.2507

Initial weight: 0.0 Learning Rate: 1.0 
Epoch 1: Weight = 6.0000, Loss = 9.0000 
Epoch 2: Weight = 0.0000, Loss = 9.0000 
Epoch 3: Weight = 6.0000, Loss = 9.0000

Initial weight: 100.0 Learning Rate: 1.0 
Epoch 1: Weight = -94.0000, Loss = 9409.0000 
Epoch 2: Weight = 100.0000, Loss = 9409.0000 
Epoch 3: Weight = -94.0000, Loss = 9409.0000

Initial weight: 0.0 Learning Rate: 10.0 
Epoch 1: Weight = 60.0000, Loss = 3249.0000 
Epoch 2: Weight = -1080.0000, Loss = 1172889.0000 
Epoch 3: Weight = 20580.0000, Loss = 423412929.0000

Initial weight: 100.0 Learning Rate: 10.0 
Epoch 1: Weight = -1840.0000, Loss = 3396649.0000 
Epoch 2: Weight = 35020.0000, Loss = 1226190289.0000 
Epoch 3: Weight = -665320.0000, Loss = 
442654694329.0000


