
CS 696 Applied Large Langauge Models
Spring Semester, 2025

Doc 3 NN Review 2
Jan 23, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Intuition: training a 2-layer Network

2

U

W

xnx1

System output �̂�

Actual answer 𝑦

Training instance

Loss function L()�̂�, 𝑦

Forward pass

Backward pass

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

66

Example:

67

e=a+d

d = 2b L=ce

a

b

c

Computations:

Example:

68

Computations:

Intuition: Training a 2-layer network

For every training tuple
◦ Run forward computation to find our estimate
◦ Run backward computation to update weights:

◦ For every output node
◦ Compute loss between true and the estimated
◦ For every weight from hidden layer to the output layer

◦ Update the weight

◦ For every hidden node
◦ Assess how much blame it deserves for the current answer
◦ For every weight from input layer to the hidden layer
◦ Update the weight

(𝑥, 𝑦)
�̂�

𝐿 𝑦 �̂�
𝑤

𝑤

5

How can I find that gradient for every weight in the network?

These derivatives on the prior slide only give the
updates for one weight layer: the last one!
What about deeper networks?
• Lots of layers, different activation functions?
Solution in the next lecture:
• Even more use of the chain rule!!
• Computation graphs and backward differentiation!

6

Example

7

The derivative , tells us how much a small change
in a affects L.

𝜕𝐿
𝜕𝑎

We want:

7.4 • TRAINING NEURAL NETS 13

Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. ??:

∂LCE

∂wk
= ({y = k}� p(y = k|x))xk

=

{y = k}� exp(wk · x+bk)PK

j=1 exp(w j · x+b j)

!
xk (7.22)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2⇤b
e = a+d
L = c⇤ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.10. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = �2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,�2) = �10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

7.4.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L

∂a , ∂L
∂b , and ∂L

∂c . The derivative ∂L
∂a , tells us how

much a small change in a affects L.
Backwards differentiation makes use of the chain rule in calculus. Suppose wechain rule

are computing the derivative of a composite function f (x) = u(v(x)). The derivative

The chain rule

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x)))

14 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

e=a+d

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)

14 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

e=a+d

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)

Example

9

Example

10

14 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

e=a+d

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)

Example

11

Example

12

Backward differentiation on a two layer network

13

σ

W[2]

W[1]

y

x2x1

Sigmoid activation

ReLU activation

1

1

b[1]

b[2]

7.4 • TRAINING NEURAL NETS 15

to compute these derivatives. Fig. 7.11 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.

e=d+a

d = 2b L=ce

a=3

b=1

e=5

d=2 L=-10

∂L=1∂L

∂L=-4∂b ∂L=-2∂d

a

b

c

∂L=-2∂a

∂L=5∂c

∂L =-2∂e∂L=-2∂e
∂e =1∂d

∂L =5∂c

∂d =2∂b

∂e =1∂a

backward pass
c=-2

Figure 7.11 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L

∂c .

Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or x < 0
1 f or x � 0 (7.30)

Backward differentiation on a two layer network

14

Backward differentiation on a 2-layer network

Starting off the backward pass:
(I'll write f and for)

𝜕𝐿
𝜕𝑧

𝑎 or 𝑎[2] 𝑧 𝑧[2]

𝐿(�̂�, 𝑦) = − (ylog(�̂�) + (1 − 𝑦)log(1 − �̂�))
𝐿(𝑎, 𝑦) = − (y log𝑎 + (1 − 𝑦)log(1 − 𝑎))

𝜕𝐿
𝜕𝑧

=
𝜕𝐿
𝜕𝑎

𝜕𝑎
𝜕𝑧

𝜕𝐿
𝜕𝑎

= − ((𝑦
𝜕log(𝑎)

𝜕𝑎) + (1 − y) 𝜕log(1 − 𝑎)
𝜕𝑎)

= − ((𝑦
1
𝑎) + (1 − y) 1

1 − 𝑎
(−1)) = − (𝑦

𝑎
+

𝑦 − 1
1 − 𝑎)

𝜕𝑎
𝜕𝑧

= 𝑎(1 − 𝑎) 𝜕𝐿
𝜕𝑧

= − (𝑦
𝑎

+
𝑦 − 1
1 − 𝑎)𝑎(1 − 𝑎) = a − y

Summary

For training, we need the derivative of the loss with respect to
weights in early layers of the network

• But loss is computed only at the very end of the network!
Solution: backward differentiation
Given a computation graph and the derivatives of all the
functions in it we can automatically compute the derivative of
the loss with respect to these early weights.

17

Why doesn’t this work Well?

Vanishing Gradient Problem

As add more layers
Gradient magnitude decreases or grows uncontrollably

Long Short-term Memory Cell

xt-1

ct-1,ht-1

ot-1

xt

ot

ct+1,ht+1

xt+1

ot+1

LSTM unit

σ σ tanh σ

tanh

ct-1

ht-1
xt

ht

ct

Ft It
Ot

ht

.

Issue: texts come in different sizes
This assumes a fixed size length (3)!
Kind of unrealistic.
Some simple solutions (more sophisticated solutions later)
1. Make the input the length of the longest review

• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same
dimensionality as a word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings

• For each dimension, pick the max value from all words 20

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the
next word in a sequence given some history.
• We've seen N-gram based LMs
• But neural network LMs far outperform n-gram

language models
State-of-the-art neural LMs are based on more
powerful neural network technology like Transformers
But simple feedforward LMs can do almost as well!

21

Simple feedforward Neural Language Models

Task: predict next word wt

 given prior words wt-1, wt-2, wt-3, …
Problem: Now we’re dealing with sequences of
arbitrary length.
Solution: Sliding windows (of fixed length)

22

23

Neural Language Model

