CS 696 Applied Large Langauge Models
Spring Semester, 2025
Doc 3 NN Review 2
Jan 23, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

Example: L(a,b,c) = c(a+2b)
g = 2%b

Computations: e = a4td

L. = iexe

T

Example: L(a,b,c) = c(a+2b)
g = 2%b

Computations: e = a+d

L. = iexe

forward pass

3 f
e=5 o

Intuition: Training a 2-layer network

For every training tuple (x, y)
> Run forward computation to find our estimate

> Run backward computation to update weights:
> For every output node

> Compute loss L between true y and the estimated)

° For every weight w from hidden layer to the output layer
o Update the weight

> For every hidden node
o Assess how much blame it deserves for the current answer

° For every weight w from input layer to the hidden layer
o Update the weight

How can | find that gradient for every weight in the network?

These derivatives on the prior slide only give the
updates for one weight layer: the last one!

What about deeper networks?

» Lots of layers, different activation functions?
Solution in the next lecture:

» Even more use of the chain rule!!

» Computation graphs and backward differentiation!

Example L(a,b,c) = c(a+2b)

d = 2xb
e = a+d
L

= Cc*xée

We want: %, %, and 9L

The derivative — tells us how much a small change
a

in a affects L.

The chain rule
Computing the derivative of a composite function:

@)= u(v(x) g2

ﬁ_dudvdw

f(x)=u(viw(x))) dx dv dw dx

Example L(a,b,c) = c(a+2b)

d = 2xb

e = a+d

L = cxe oL
gz (4
dL. dLde
da _ deda
dL. JL de dd

Example IL 9L de

L(a,b,c) = c(a+2b) da deda
b de dd db
e = a+d
L = cxe - oL JL
L=ce : x—c,%—e
de de
eza-l—d . Ezl,a—dzl
d=2b 8d_2

= =

JdL
Example %
a=3 db

c=-

oL oe
de da
dL de dd

de dd db

L=-10

de T ¢
G0,
da dd
dd

- =

Example

Backward differentiation on a two layer network

0]

AU — il plt
a!l = ReLU(Z!)
A2 w2l pl2

Sigmoid activation

WiI2]

RelLU activation

WI1]

Backward differentiation on a two layer network

A — wllg g pll

al = ReLU(Z) dRe;,U(z) _ {(1) ;Z: zig
A2 — w4 2 ‘ -
a? = G(Z[z]) d;iz)=6(z)(l—6(z))

_ 40

<>

Backward differentiation on a 2-layer network

dReLU(z) [0 for z<0
dz I for z=20

2019 _ o(2)(1- ()

dReLU(z) 0 for z<0
dz: |1 for z=0

(1] v

, oL al'l = ReLU(Z!")

Starting off the backward pass: — \ .,,
. 0z A2 = wllgll 4 pl2l

('l write @ for a2 and z for z[21) am N 6(‘:12:‘]

A\ F = al®
L(5 y) ~ (yiog®) + (1 - y)log(1 - 3)) :
L{a,y) == (yloga+ (1-y)log(l - a))

dz 0a 02

oL B dlog(a) B dlog(1l — a)

da <<y da) t=y) da >
1 1

=_<<y3> e

oa oL —1
=a(l - a) — == Z+y a(l —a)y=a-—y
Z 0z

Summary

For training, we need the derivative of the loss with respect to
weights in early layers of the network

« Butloss is computed only at the very end of the network!
Solution: backward differentiation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the derivative of
the loss with respect to these early weights.

Why doesn’t this work Well?

Vanishing Gradient Problem

As add more layers
Gradient magnitude decreases or grows uncontrollably

Long Short-term Memory Cell

Issue: texts come in different sizes

-0 --00 (@ <+ @ ++ 09 (@@ ++ @ - 00)

This assumes a fixed size length (3)! embedding for - embedding for embedding for
) . \ | \

Kind of unrealistic. T e | e | B

W3

Some simple solutions (more sophisticated sollutionszlater)

1. Make the input the length of the longest review
« If shorter then pad with zero embeddings

« Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same

dimensionality as a word) to represent all the words
» Take the mean of all the word embeddings

« Take the element-wise max of all the word embeddings
« For each dimension, pick the max value from all words

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the
next word in a sequence given some history.

« We've seen N-gram based LMs

» But neural network LMs far outperform n-gram
language models

State-of-the-art neural LMs are based on more
powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!

Simple feedforward Neural Language Models

Task: predict next word w,

given prior words w,_;, W, », W3, ...

Problem: Now we’re dealing with sequences of
arbitrary length.

Solution: Sliding windows (of fixed length)

1
P(wi|w| ") = P(wi|w;_ N+1)

Neural Language Model

p(aard\T/arkl...) p(ﬁs;ll...) p(foTrl...) p(zebTral...)
el (SN N R S
Prs=———me

Hidden layer @.@\

Projection layer » = — o8 3dxl
embeddings T
E embeddmg for embedding for embedding for
word 35 word 9925 word 45180
— ! 1
3.l and thanksl for all the] ? |.Z
V-3 W2 Wt-1 Wi

