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Computation Graphs

A computation graph represents the process of
computing a mathematical expression




Example: L(a,b,c) = c(a+2b)
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Intuition: Training a 2-layer network

For every training tuple (x, y)
> Run forward computation to find our estimate

> Run backward computation to update weights:
> For every output node

> Compute loss L between true y and the estimated )

° For every weight w from hidden layer to the output layer
o Update the weight

> For every hidden node
o Assess how much blame it deserves for the current answer

° For every weight w from input layer to the hidden layer
o Update the weight




How can | find that gradient for every weight in the network?

These derivatives on the prior slide only give the
updates for one weight layer: the last one!

What about deeper networks?

» Lots of layers, different activation functions?
Solution in the next lecture:

» Even more use of the chain rule!!

» Computation graphs and backward differentiation!
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The derivative — tells us how much a small change
a

in a affects L.




The chain rule
Computing the derivative of a composite function:
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Backward differentiation on a two layer network
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Backward differentiation on a two layer network
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Backward differentiation on a 2-layer network
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Summary

For training, we need the derivative of the loss with respect to
weights in early layers of the network

« Butloss is computed only at the very end of the network!
Solution: backward differentiation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the derivative of
the loss with respect to these early weights.




Why doesn’t this work Well?

Vanishing Gradient Problem

As add more layers
Gradient magnitude decreases or grows uncontrollably




Long Short-term Memory Cell




Issue: texts come in different sizes
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Some simple solutions (more sophisticated sollutionszlater)

1. Make the input the length of the longest review
« If shorter then pad with zero embeddings

« Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same

dimensionality as a word) to represent all the words
» Take the mean of all the word embeddings

« Take the element-wise max of all the word embeddings
«  For each dimension, pick the max value from all words



Neural Language Models (LMs)

Language Modeling: Calculating the probability of the
next word in a sequence given some history.

« We've seen N-gram based LMs

» But neural network LMs far outperform n-gram
language models

State-of-the-art neural LMs are based on more
powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!



Simple feedforward Neural Language Models

Task: predict next word w,

given prior words w,_;, W, », W3, ...

Problem: Now we’re dealing with sequences of
arbitrary length.

Solution: Sliding windows (of fixed length)

1
P(wi|w| ") = P(wi|w;_ N+1)



Neural Language Model
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