CS 696 Applied Large Langauge Models Spring Semester, 2025 Doc 6 Cluster, Embedding, Attention Jan 30, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

These slides use material from **Acknowledgments**

Wikipedia

https://en.wikipedia.org/wiki/Byte_pair_encoding

Building a Large Language Model (from Scratch), Sebastian Raschka

Hands on Large Language Models, Jay Alammar and Maarten Grootendorst

Gemini Pro

RoFormer: Enhanced transformer with Rotary Position Embedding, Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, Yunfeng Liu, Neurocomputing, Volume 568, 1 February 2024, 127063

SDSU GPU Cluster

PowerEdge R750XA (2x) Intel Xeon Gold 6338 2G CPU, 32C/64T (4x) Nvidia A100 GPU, 80 GB RAM 512 GB System RAM

The GPUs available have 10GB of RAM Suitable for training/fine-tuning 7-8 billion parameter models. Students 75GB of persistent storage space

Accessing GPU Cluster

Documentation

https://sdsu-research-ci.github.io/instructionalcluster/students

SDSU Research & Cyberinfrastructure		Q Search SDSU Research & Cyberinfrastructure	SDSU Research & Cyberinfrastructure on GitHub
		Instructional Cluster / Student Resources	
Home			
Instructional Cluster	^	TABLE OF CONTENTS	
Overview		 Logging In 	
Student Resources	^	Launch a Container	
Logging In			
Launch a Container			
Instructor Resources	~	Back to top	
Frequently Asked Questions	~		
How-To Videos	~	Edit this page on GitHub	
Available Container Images			
Architecture Details			
Usage			
Research Cluster	~		
GitHub Education	~		
Software Factory	~		
IT@SDSU 🗗			

Logging In

Go to:

https://jupyterhub.sdsu.edu/

Login to CILogon

SDSUid (e.g.

jsmith@sdsu.edu)

Recover your password

> Need Help?

Password

🗹 Don't Remember Login

Login

CILogon facilitates secure access to CyberInfrastructure (CI).

Enter your SDSUid credentials

© 2012-2025 San Diego State University (v.P1-AR8)

Enter Server Options

Server Options

Container images are described on our available container images page.

Select a Profile

0	Default Profile Select compute resources, number of GPUs and a notebook container image, or provide your own image with the "Other" choice.
	Compute Resources
	Large - 8 CPUs & 16 GB RAM
	Number of GPUs
	4
	Notebook Container Image
	LLM Notebook

Start

Select Kernel

elect Kernel	
Start Preferred Kernel	
Python 3 (ipykernel)	•
Use No Kernel	
No Kernel	
Use Kernel from Preferred Session	
Use Kernel from Other Session	
Console 1	

Get Jupyter Interface

\bigcirc	File	Edit	View	Run	Kernel	Gi	it Ta	abs	Set	tings	з Н	elp								
		+		<u>*</u>	G		2	Con	sole 1	1			×		tes	t.ipynb			×	+
_							8	+	ж		Ĉ	۲	-	C	**	Code	~	()	git	
0	•	•							1.											
	Filt	er files	by nam	ne	Q		14	l	1:											
♦																				
	Nan	ne		•	Modifi	ed														
≡		test.ipy	nb		10s ag	go														
•																				
-																				
믹																				

Launcher

Console 1	× 🖪 te	st.ipynb	× 🛛 Launche	er ×	+
	Notebook				
	Python 3 (ipykernel)	VS Code (code-server) [↗]			
	>_ Console				
	Python 3 (ipykernel)				
	\$_ Other				
	\$_ Terminal	Text File	Markdown File	Python File	Show Contextual

Large Language Model Notebook

minimal-notebook

Ubuntu 22.04.4 JupyterLab 4.2.4 Python 3.11.9 Git 2.34.1 vi nano wget curl unzip tzdata SciPy Notebook

altair, beautifulsoup4, bokeh, bottleneck, cloudpickle, conda-forge::blas=*=openblas, cython, dask, dill, h5py, jupyterlab-git, matplotlib-base, numba, numexpr, openpyxl, pandas, patsy, protobuf, pytables, scikit-image, scikit-learn, scipy, seaborn, sqlalchemy, statsmodel, sympy, widgetsnbextension, xlrd packages

ipympl and ipywidgets for interactive visualizations and plots in Python notebooks

Facets for visualizing machine learning datasets

PyTorch Notebook

pytorch machine learning library torch, torchaudio and torchvision

Large Language Model Notebook

rclone deepspeed FastChat langchain Ollama huggingface_hub VS Code Server auto_gptq Jupyter Al autoawq bitsandbytes xformers transformers dask-kubernetes peft chromadb accelerate trl ollama-python openai pyaudio portaudio cuda-nvcc

Manually Stopping the Server

File	Edit	View	Run	Kernel	Git	Tabs
Ν	lew					•
٨	lew Lau	ncher			ئ ک	₩L
C	Open fro	m Path.				
C	Open fro	m URL.				
C	Open Re	cent				•
N	lew Vie	w for				
Ν	lew Cor	nsole for	r Activit	У		
C	close Ta	b			7	W
C	close an	d Shut I	Down		^ {	} Q
C	Close All	Tabs				
S	Save				00	₿S
S	Save As.				☆ 3	∜ S
S	Save All					
R	Reload fi	rom Dis	k			
R	levert to	Check	point			
R	lename.					
D	Duplicate	e				
D	Downloa	d				
S	Save and	l Export	Notebo	ook As		•
v	Vorkspa	ces				•
P	rint				00	βР
► F	lub Con	trol Pan	el			
L	.og Out					

Warning

I have not been able to run an existing model on the cluster

There is some problem with the version of the libraries

Back to Tokens

Tokens are just a way to represent works in numbers

They don't capture the relationship between words

To capture the relationship between tokens, convert them to a vector

Byte Pair Encoding (BPE)

Original Algorithm (for compression)

Find the most common pair of characters Replace with new symbol Repeat Example from Wikipedia

aaabdaaabac

ZabdZabac Z=aa

ZYdZYac Y=ab Z=aa

XdXac X=ZY Y=ab Z=aa

Byte-level BPE

Used by BERT models, GPT-2 When coming across words not in the vocabulary Convert to UTF-8 and encode pairs of characters No need for <|unk|> import tiktoken

tokenizer = tiktoken.get_encoding("gpt2")
text = "aaabdaaabac"
integers = tokenizer.encode(text)
for i in integers:
 print(f"{i} -> {tokenizer.decode([i])}")

'aaabdaaabac"	"This is a cat"	"Thisisacat"
7252 -> aa	1212 -> This	1212 -> This
397 -> ab	318 -> is	271 -> is
6814 -> da	257 -> a	330 -> ac
64 -> a	3797 -> cat	265 -> at
397 -> ab		
• • •		

330 -> ac

Token to Embeddings

Represent a token as a vector in n-space Related tokens should be close to each other

Type of Embeddings

Token Embeddings

Vector representation (embedding) using a lookup table

Segment Embeddings Which sentence a token belongs to

Position Embeddings Position of each token in the sequence

Embedding Space

Higher the dimension of the space

Captures more information about the relationship between tokens

Requires more computation

Embedding Size									
GPT-2 Models	768 dimensions								
GPT-3 (175 parameters)	12,288 dimensions								
Bert-base	768 dimensions								
Bert-large	1024 dimensions								

Map each token to a vector in the space

How to do the Embedding

- N number of tokens
- D dimension of embedding space (hyperparameter)

Create a matrix (weight matrix) with N rows and D columns Fill with random values

The K'th row is the embedding (vector) of token ID K

Use training data to modify the weight matrix

Example from the Text

Small values so can see what is going on

Number of tokens = 6

Dimension of embedding space = 3

Input text

Fox jumps over dog

Example from the Text

LLM Predict the next Word

Training

Training

Stride, Window Size, Context

Adding Absolute Positional Embeddings

GPT uses absolute positional embeddings optimized in training

Positional Embeddings - Sinusoidal

Consider the sentence: "The cat sat on the mat."

Position 1 ("The"): [sin(1/10000^(0/5)), cos(1/10000^(0/5)), sin(1/10000^(2/5)), cos(1/10000^(2/5))] Position 2 ("cat"): [sin(2/10000^(0/5)), cos(2/10000^(0/5)), sin(2/10000^(2/5)), cos(2/10000^(2/5))] Position 3 ("sat"): [sin(3/10000^(0/5)), cos(3/10000^(0/5)), sin(3/10000^(2/5)), cos(3/10000^(2/5))]

Positional Embeddings - Rotary (RoPE)

Combines relative and absolute position

$$f_{\{q,k\}}\left(m{x}_{m},m
ight) = \! \begin{pmatrix} \cos m heta & -\sin m heta \ \sin m heta & \cos m heta \end{pmatrix} \! egin{pmatrix} W^{(11)}_{\{q,k\}} & W^{(12)}_{\{q,k\}} \ W^{(21)}_{\{q,k\}} & W^{(22)}_{\{q,k\}} \end{pmatrix} \! egin{pmatrix} x^{(1)}_m \ x^{(2)}_m \end{pmatrix}$$

"rotate the affine-transformed word embedding vector by the number of angle multiples of its position index"

Relative Positional Embedding

Example: The cat sat on

Distance between tokens

Token Pair	Relative Distance	Embedding
The - "cat"	I	[0.2, 0.5, -0.1]
cat - "The"	-1	[-0.3, 0.1, 0.4]
cat - "sat"	I	[0.2, 0.5, -0.1]
sat - "cat"	-1	[-0.3, 0.1, 0.4]
The - "sat"	2	[0.8, -0.2, 0.3]
sat - "The"	-2	[-0.7, 0.6, -0.5]
cat - "on"	2	[0.8, -0.2, 0.3]
on - "cat"	-2	[-0.7, 0.6, -0.5]
The - "on"	+3 (clipped to +2)	[0.8, -0.2, 0.3]
on - "The"	-3 (clipped to -2)	[-0.7, 0.6, -0.5]

The model learns how far apart tokens are

Big Picture - Responses One Word at a Time

Big Picture - Attach Predicted Word to input

This is not how you see LLMs work

LLMs

Trained on instruction-tuning and human preference

To match what we want

Big Picture - LM Head

Big Picture - LM Head

Big Picture - Output

Decoding Strategy

Don't just choose the token with the highest probability

Sample based on probabilities Choose Dear 40% of the time Choose Title 13% of the time

Big Picture - Processing Token in Parallel (sort of)

Big Picture - Caching Keys & Values

Context Length

Number of tokens can be processed at once

Model	Context Length
GPT-4o	I 28k
GPT 3.5	4,095
GPT 4	8,192
Llama I	2,048

Embeddings Utput vectors Transformer LLM Tokenizer Vrite ... Explain how it happen ##ed Transformer block 1 Transformer block 2 LM head

Big Picture - Processing Token in Parallel (sort of)

Block Contents

Attention

Need a way to compute how relevant each previous token is

Combine those computations into output vector

Attention - Chapter 3

Why We need Attention

Encoder - Decoder NN

Bahdanau Attention

