
CS 696 Applied Large Langauge Models
Spring Semester, 2025

Doc 6 Cluster, Embedding, Attention
Jan 30, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Acknowledgments

2

These slides use material from

Wikipedia
https://en.wikipedia.org/wiki/Byte_pair_encoding

Building a Large Language Model (from Scratch), Sebastian Raschka

Hands on Large Language Models, Jay Alammar and Maarten Grootendorst

Gemini Pro

RoFormer: Enhanced transformer with Rotary Position Embedding, Jianlin Su,
	 Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, Yunfeng Liu,
Neurocomputing, Volume 568, 1 February 2024, 127063

https://en.wikipedia.org/wiki/Byte_pair_encoding

SDSU GPU Cluster

3

PowerEdge R750XA
(2x) Intel Xeon Gold 6338 2G CPU, 32C/64T
(4x) Nvidia A100 GPU, 80 GB RAM
512 GB System RAM

The GPUs available have 10GB of RAM
Suitable for training/fine-tuning 7-8 billion parameter models.
Students 75GB of persistent storage space

Accessing GPU Cluster

4

Documentation
https://sdsu-research-ci.github.io/instructionalcluster/students

https://sdsu-research-ci.github.io/instructionalcluster/students

Logging In

5

Go to:
https://jupyterhub.sdsu.edu/

Enter your SDSUid credentials

Enter Server Options

6

Select Kernel

7

Get Jupyter Interface

8

Launcher

9

Large Language Model Notebook

10

11

minimal-notebook

Ubuntu 22.04.4
JupyterLab 4.2.4
Python 3.11.9
Git 2.34.1
vi
nano
wget
curl
unzip
tzdata

altair, beautifulsoup4, bokeh, bottleneck, cloudpickle,
conda-forge::blas=*=openblas, cython, dask, dill,
h5py, jupyterlab-git, matplotlib-base, numba,
numexpr, openpyxl, pandas, patsy, protobuf,
pytables, scikit-image, scikit-learn, scipy, seaborn,
sqlalchemy, statsmodel, sympy, widgetsnbextension,
xlrd packages

ipympl and ipywidgets for interactive visualizations
and plots in Python notebooks

Facets for visualizing machine learning datasets

SciPy Notebook

PyTorch Notebook

pytorch machine learning library
torch, torchaudio and torchvision

Large Language Model Notebook

12

rclone
FastChat
Ollama
VS Code Server
Jupyter AI
bitsandbytes
transformers
peft
accelerate
trl
ollama-python
openai
pyaudio
portaudio
cuda-nvcc

deepspeed
langchain
huggingface_hub
auto_gptq
autoawq
xformers
dask-kubernetes
chromadb

Manually Stopping the Server

13

Warning

14

I have not been able to run an existing model on the cluster

There is some problem with the version of the libraries

Back to Tokens

15

Goodbye , and thanks for all the fish !

17212, 43571, 11, 326, 11707, 395, 722, 290, 13897, 0

Tokens are just a way to represent works in numbers

They don’t capture the relationship between words

To capture the relationship between tokens, convert them to a vector

Byte Pair Encoding (BPE)

16

Original Algorithm (for compression)

Find the most common pair of characters
Replace with new symbol
Repeat

ZabdZabac
Z=aa

ZYdZYac
Y=ab
Z=aa

XdXac
X=ZY
Y=ab
Z=aa

aaabdaaabac

Example from Wikipedia

Byte-level BPE

17

Used by BERT models, GPT-2
When coming across words not in the vocabulary
Convert to UTF-8 and encode pairs of characters
No need for <|unk|>

import tiktoken

tokenizer = tiktoken.get_encoding("gpt2")
text = "aaabdaaabac"
integers = tokenizer.encode(text)
for i in integers:
 print(f"{i} -> {tokenizer.decode([i])}")

7252 -> aa
397 -> ab
6814 -> da
64 -> a
397 -> ab
330 -> ac

"aaabdaaabac"

1212 -> This
318 -> is
257 -> a
3797 -> cat

“This is a cat” "Thisisacat"

1212 -> This
271 -> is
330 -> ac
265 -> at

Token to Embeddings

18

Represent a token as a vector in n-space
Related tokens should be close to each other

Type of Embeddings

19

Token Embeddings
Vector representation (embedding) using a lookup table

Segment Embeddings
Which sentence a token belongs to

Position Embeddings
Position of each token in the sequence

Embedding Space

20

Higher the dimension of the space
Captures more information about the relationship between tokens
Requires more computation

GPT-2 Models	 768 dimensions
GPT-3 (175 parameters) 12,288 dimensions
Bert-base	 	 	 	 768 dimensions
Bert-large	 	 	 	 1024 dimensions

Embedding Size

Map each token to a vector in the space

How to do the Embedding

21

N	 number of tokens
D	 dimension of embedding space (hyperparameter)

Create a matrix (weight matrix) with N rows and D columns
Fill with random values

The K’th row is the embedding (vector) of token ID K

Use training data to modify the weight matrix

Example from the Text

22

Small values so can see what is going on

Number of tokens = 6

Dimension of embedding space = 3

Input text

Fox jumps over dog

Example from the Text

23

LLM Predict the next Word

24

Training

Training

25

Stride, Window Size, Context

26

Adding Absolute Positional Embeddings

27

1.3 -0.2-0.2 -0.4 -1.11.0

1.1 1.3 1.2 2.1 2.32.2

1.3 -0.2-0.2 -0.4 -1.11.0

+ +
Token Embedings

Positional Embedings

Input Embedings

First token Second token

GPT uses absolute positional embeddings optimized in training

Positional Embeddings - Sinusoidal

28

Consider the sentence: "The cat sat on the mat."

Position 1 ("The"): [sin(1/10000^(0/5)), cos(1/10000^(0/5)), sin(1/10000^(2/5)), cos(1/10000^(2/5))]
Position 2 ("cat"): [sin(2/10000^(0/5)), cos(2/10000^(0/5)), sin(2/10000^(2/5)), cos(2/10000^(2/5))]
Position 3 ("sat"): [sin(3/10000^(0/5)), cos(3/10000^(0/5)), sin(3/10000^(2/5)), cos(3/10000^(2/5))]

Positional Embeddings - Rotary (RoPE)

29

Combines relative and absolute position

“rotate the affine-transformed word embedding vector by the
number of angle multiples of its position index”

Relative Positional Embedding

30

Example: The cat sat on

Token Pair Relative Distance Embedding

The - "cat" 1 [0.2, 0.5, -0.1]

cat - "The" -1 [-0.3, 0.1, 0.4]

cat - "sat" 1 [0.2, 0.5, -0.1]

sat - "cat" -1 [-0.3, 0.1, 0.4]

The - "sat" 2 [0.8, -0.2, 0.3]

sat - "The" -2 [-0.7, 0.6, -0.5]

cat - "on" 2 [0.8, -0.2, 0.3]

on - "cat" -2 [-0.7, 0.6, -0.5]

The - "on" +3 (clipped to +2) [0.8, -0.2, 0.3]

on - "The" -3 (clipped to -2) [-0.7, 0.6, -0.5]

Distance between tokens

The model learns how far apart tokens are

Big Picture - Responses One Word at a Time

31

Big Picture - Attach Predicted Word to input

32

This is not how you see LLMs work

LLMs
Trained on instruction-tuning and human preference
To match what we want

Big Picture - LM Head

33

Big Picture - LM Head

34

Big Picture - Output

35

Decoding Strategy

36

Don’t just choose the token with the highest probability

Sample based on probabilities
Choose Dear 40% of the time
Choose Title 13% of the time

Big Picture - Processing Token in Parallel (sort of)

37

Big Picture - Caching Keys & Values

38

Context Length
Number of tokens can be processed at once

Model Context Length

GPT-4o 128k

GPT 3.5 4,095

GPT 4 8,192

Llama 1 2,048

Big Picture - Processing Token in Parallel (sort of)

39

40

Block Contents

41

Attention

42

Need a way to compute how relevant each previous token is

Combine those computations into output vector

Attention - Chapter 3

43

44

Why We need Attention

45

Encoder - Decoder NN

46

Bahdanau Attention

47

