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SDSU GPU Cluster
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PowerEdge R750XA 
(2x) Intel Xeon Gold 6338 2G CPU, 32C/64T 
(4x) Nvidia A100 GPU, 80 GB RAM 
512 GB System RAM

The GPUs available have 10GB of RAM  
Suitable for training/fine-tuning 7-8 billion parameter models.  
Students 75GB of persistent storage space



Accessing GPU Cluster
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Documentation 
https://sdsu-research-ci.github.io/instructionalcluster/students

https://sdsu-research-ci.github.io/instructionalcluster/students


Logging In
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Go to: 
https://jupyterhub.sdsu.edu/

Enter your SDSUid credentials



Enter Server Options
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Select Kernel
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Get Jupyter Interface
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Launcher
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Large Language Model Notebook
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minimal-notebook

Ubuntu 22.04.4 
JupyterLab 4.2.4 
Python 3.11.9 
Git 2.34.1 
vi 
nano 
wget 
curl 
unzip 
tzdata 

altair, beautifulsoup4, bokeh, bottleneck, cloudpickle, 
conda-forge::blas=*=openblas, cython, dask, dill, 
h5py, jupyterlab-git, matplotlib-base, numba, 
numexpr, openpyxl, pandas, patsy, protobuf, 
pytables, scikit-image, scikit-learn, scipy, seaborn, 
sqlalchemy, statsmodel, sympy, widgetsnbextension, 
xlrd packages 

ipympl and ipywidgets for interactive visualizations 
and plots in Python notebooks 

Facets for visualizing machine learning datasets

SciPy Notebook

PyTorch Notebook

pytorch machine learning library  
torch, torchaudio and torchvision



Large Language Model Notebook
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rclone 
FastChat 
Ollama 
VS Code Server 
Jupyter AI 
bitsandbytes 
transformers 
peft 
accelerate 
trl 
ollama-python 
openai 
pyaudio 
portaudio 
cuda-nvcc

deepspeed 
langchain 
huggingface_hub 
auto_gptq 
autoawq 
xformers 
dask-kubernetes 
chromadb 



Manually Stopping the Server
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Warning
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I have not been able to run an existing model on the cluster 

There is some problem with the version of the libraries



Back to Tokens
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Goodbye   ,    and     thanks     for     all     the     fish    !

17212, 43571, 11, 326, 11707, 395, 722, 290, 13897,  0

Tokens are just a way to represent works in numbers 

They don’t capture the relationship between words

To capture the relationship between tokens, convert them to a vector



Byte Pair Encoding (BPE)
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Original Algorithm (for compression)

Find the most common pair of characters 
Replace with new symbol 
Repeat

ZabdZabac 
Z=aa

ZYdZYac 
Y=ab 
Z=aa

XdXac 
X=ZY 
Y=ab 
Z=aa

aaabdaaabac

Example from Wikipedia



Byte-level BPE
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Used by BERT models, GPT-2
When coming across words not in the vocabulary 
Convert to UTF-8 and encode pairs of characters 
No need for <|unk|> 

import tiktoken 

tokenizer = tiktoken.get_encoding("gpt2") 
text = "aaabdaaabac" 
integers = tokenizer.encode(text) 
for i in integers: 
    print(f"{i} -> {tokenizer.decode([i])}")

7252 -> aa 
397 -> ab 
6814 -> da 
64 -> a 
397 -> ab 
330 -> ac

"aaabdaaabac"

1212 -> This 
318 ->  is 
257 ->  a 
3797 ->  cat

“This is a cat” "Thisisacat"

1212 -> This 
271 -> is 
330 -> ac 
265 -> at



Token to Embeddings
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Represent a token as a vector in n-space 
Related tokens should be close to each other 



Type of Embeddings
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Token Embeddings 
Vector representation (embedding) using a lookup table

Segment Embeddings 
Which sentence a token belongs to

Position Embeddings 
Position of each token in the sequence



Embedding Space
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Higher the dimension of the space 
Captures more information about the relationship between tokens 
Requires more computation

GPT-2 Models	                 768 dimensions 
GPT-3 (175 parameters)   12,288 dimensions 
Bert-base	 	 	 	   768 dimensions 
Bert-large	 	 	 	 1024 dimensions

Embedding Size

Map each token to a vector in the space



How to do the Embedding
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N	 number of tokens 
D	 dimension of embedding space (hyperparameter)

Create a matrix (weight matrix) with N rows and D columns 
Fill with random values 

The K’th row is the embedding (vector) of token ID K

Use training data to modify the weight matrix 



Example from the Text
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Small values so can see what is going on 

Number of tokens = 6 

Dimension of embedding space = 3

Input text 

Fox jumps over dog



Example from the Text
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LLM Predict the next Word
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Training



Training
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Stride, Window Size, Context
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Adding Absolute Positional Embeddings
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1.3 -0.2-0.2 -0.4 -1.11.0

1.1  1.3 1.2 2.1  2.32.2

1.3 -0.2-0.2 -0.4 -1.11.0

+ +
Token Embedings

Positional Embedings

Input Embedings

First token Second token

GPT uses absolute positional embeddings optimized in training



Positional Embeddings - Sinusoidal
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Consider the sentence: "The cat sat on the mat." 

Position 1 ("The"):  [sin(1/10000^(0/5)), cos(1/10000^(0/5)), sin(1/10000^(2/5)), cos(1/10000^(2/5))]  
Position 2 ("cat"):  [sin(2/10000^(0/5)), cos(2/10000^(0/5)), sin(2/10000^(2/5)), cos(2/10000^(2/5))]  
Position 3 ("sat"):  [sin(3/10000^(0/5)), cos(3/10000^(0/5)), sin(3/10000^(2/5)), cos(3/10000^(2/5))]



Positional Embeddings - Rotary (RoPE)

29

Combines relative and absolute position

“rotate the affine-transformed word embedding vector by the 
number of angle multiples of its position index”



Relative Positional Embedding
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Example: The cat sat on

Token Pair Relative Distance Embedding

The - "cat" 1 [0.2, 0.5, -0.1]

cat - "The" -1 [-0.3, 0.1, 0.4]

cat - "sat" 1 [0.2, 0.5, -0.1]

sat - "cat" -1 [-0.3, 0.1, 0.4]

The - "sat" 2 [0.8, -0.2, 0.3]

sat - "The" -2 [-0.7, 0.6, -0.5]

cat - "on" 2 [0.8, -0.2, 0.3]

on - "cat" -2 [-0.7, 0.6, -0.5]

The - "on" +3 (clipped to +2) [0.8, -0.2, 0.3]

on - "The" -3 (clipped to -2) [-0.7, 0.6, -0.5]

Distance between tokens 

The model learns how far apart tokens are



Big Picture - Responses One Word at a Time
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Big Picture - Attach Predicted Word to input
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This is not how you see LLMs work 

LLMs 
Trained on instruction-tuning and human preference 
To match what we want



Big Picture - LM Head
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Big Picture - LM Head
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Big Picture - Output
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Decoding Strategy
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Don’t just choose the token with the highest probability 

Sample based on probabilities 
Choose Dear 40% of the time 
Choose Title 13% of the time



Big Picture - Processing Token in Parallel (sort of)
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Big Picture - Caching Keys & Values
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Context Length 
Number of tokens can be processed at once

Model Context Length

GPT-4o 128k

GPT 3.5 4,095

GPT 4 8,192

Llama 1 2,048



Big Picture - Processing Token in Parallel (sort of)
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Block Contents
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Attention
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Need a way to compute how relevant each previous token is 

Combine those computations into output vector



Attention - Chapter 3
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Why We need Attention
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Encoder - Decoder NN
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Bahdanau Attention
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