
CS 696 Applied Large Language Models
Spring Semester, 2025

Doc 9 GPU Cluster, Attention, GPT Model
Feb 11, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

My LLM’s outputs got 1000% better with this simple trick. Nikhil Anand
https://ai.gopubby.com/my-llms-outputs-got-1000-better-with-this-simple-trick-8403cf58691c

Building a Large Language Model (from Scratch), Sebastian Raschka

Hands on Large Language Models, Jay Alammar and Maarten Grootendorst

Gemini Pro

DeepSeek

PyTorch Documentation
https://pytorch.org/docs/stable/torch.html

3

https://andrewchen.substack.com/p/revenge-of-the-gpt-wrappers-defensibility

Githup Model Playground

4

https://docs.github.com/en/github-models/prototyping-with-ai-models

github.com/marketplace/models.

pip install transformers --user

5

Puts transformers in your permanent storage
.local

You don’t need to do it again

cache & Disk space

6

I ran out of disk space on the cluster

Cache did not remove any files

jovyan@jupyter-rwhitney-40sdsu-2eedu:~$ ls .cache/huggingface/hub/

datasets--yelp_review_full models--facebook--bart-large-cnn
models--bert-base-uncased models--microsoft--Phi-3-mini-4k-instruct
models--distilbert-base-uncased version.txt

7

jovyan@jupyter-rwhitney-40sdsu-2eedu:~$ cd .cache/huggingface/hub/
jovyan@jupyter-rwhitney-40sdsu-2eedu:~/.cache/huggingface/hub$ du .

…
2664 ./models--facebook--bart-large-cnn

430820 ./models--bert-base-uncased/blobs
…
430824 ./models--bert-base-uncased
…
7465588 ./models--microsoft--Phi-3-mini-4k-instruct/blobs
…
7465596 ./models--microsoft--Phi-3-mini-4k-instruct
7899104 .

Configuring Models

8

GPT_CONFIG_124M = {
 "vocab_size": 50257, # Vocabulary size
 "context_length": 1024, # Context length
 "emb_dim": 768, # Embedding dimension
 "n_heads": 12, # Number of attention heads
 "n_layers": 12, # Number of layers
 "drop_rate": 0.1, # Dropout rate
 "qkv_bias": False # Query-Key-Value bias
}

BertConfig

9

BertConfig {
 "_attn_implementation_autoset": true,
 "_name_or_path": "bert-base-uncased",
 "architectures": [
 "BertForMaskedLM"
],
 "attention_probs_dropout_prob": 0.1,
 "classifier_dropout": null,
 "gradient_checkpointing": false,
 "hidden_act": "gelu",
 "hidden_dropout_prob": 0.1,
 "hidden_size": 768,
 "initializer_range": 0.02,
 "intermediate_size": 3072,
 "layer_norm_eps": 1e-12,

 "max_position_embeddings": 512,
 "model_type": "bert",
 “num_attention_heads": 12,
 "num_hidden_layers": 12,
 "pad_token_id": 0,
 "position_embedding_type": "absolute",
 "transformers_version": "4.48.2",
 "type_vocab_size": 2,
 "use_cache": true,
 "vocab_size": 30522
}

from transformers import BertTokenizer, BertModel
model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)

MistralConfig

10

MistralConfig {
 "_attn_implementation_autoset": true,
 "_name_or_path": "mistralai/Mistral-Small-24B-Instruct-2501",
 "architectures": [
 "MistralForCausalLM"
],
 "attention_dropout": 0.0,
 "bos_token_id": 1,
 "eos_token_id": 2,
 "head_dim": 128,
 "hidden_act": "silu",
 "hidden_size": 5120,
 "initializer_range": 0.02,
 "intermediate_size": 32768,
 "max_position_embeddings": 32768,
 "model_type": "mistral",
 "num_attention_heads": 32,
 "num_hidden_layers": 40,

 “num_key_value_heads": 8,
 "rms_norm_eps": 1e-05,
 "rope_theta": 100000000.0,
 "sliding_window": null,
 "tie_word_embeddings": false,
 "torch_dtype": "bfloat16",
 "transformers_version": "4.48.3",
 "use_cache": true,
 "vocab_size": 131072

transformers.PretrainedConfig

11

model_type: (String)

vocab_size: (Integer)

hidden_size: (Integer)

num_hidden_layers: (Integer)

num_attention_heads: (Integer)

intermediate_size: (Integer)

hidden_act: (String) hidden layer activation function (e.g., "gelu", “relu")

hidden_dropout_prob: (Float)

attribute_map (Dict[str, str])
model specific attribute names -> standardized attribute namings

transformers.PretrainedConfig

12

from_pretrained(pretrained_model_name_or_path, **kwargs)

save_pretrained(save_directory)

to_dict()

update(**kwargs)

copy()

update_from_string(String)

Saving the Config

13

from transformers import AutoConfig, BertConfig

config = BertConfig.from_pretrained("bert-base-uncased")

print(config.vocab_size)
print(config.hidden_size)

config.hidden_dropout_prob = 0.2 #Some configs don’t allow this

config.save_pretrained("./my_bert_config")

config = BertConfig.from_pretrained("./my_bert_config")

Downloading a Model

14

from transformers import AutoModelForCausalLM, AutoTokenizer

access_token = “xxx"

model = AutoModelForCausalLM.from_pretrained(
 "mistralai/Mistral-Small-24B-Instruct-2501",
 token=access_token,
 device_map="auto",
 attn_implementation='eager',
 torch_dtype="auto",
 trust_remote_code=True,
)

Generate vs Pipeline

15

Pipeline
Convenience method

Mig (Multiple Independent GPU) bug in Linux transformer stack

Generate
Called by pipeline

Lower level

 Run this to set mig_uuids

16

import os
import sys
import torch
import subprocess
import re

def get_mig_uuids():
 result = subprocess.run(['nvidia-smi', '-L'], stdout=subprocess.PIPE, text=True)
 if result.returncode != 0:
 raise RuntimeError(f"Command 'nvidia-smi -L' failed with exit code {result.returncode}")
 output = result.stdout

 mig_uuid_pattern = re.compile(r'MIG-[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}')
 mig_uuids = mig_uuid_pattern.findall(output)
 return mig_uuids

def set_cuda_visible_devices(mig_uuids):
 mig_uuids_str = ','.join(mig_uuids)
 os.environ['CUDA_VISIBLE_DEVICES'] = mig_uuids_str
 print(f"CUDA_VISIBLE_DEVICES set to: {mig_uuids_str}")

mig_uuids = get_mig_uuids()
if mig_uuids:
 set_cuda_visible_devices(mig_uuids)
else:
 print("No MIG devices found.")

Generate Example

17

from transformers import AutoModelForCausalLM, AutoTokenizer

access_token = "XXX"

model = AutoModelForCausalLM.from_pretrained(
 "mistralai/Mistral-Small-24B-Instruct-2501",
 token=access_token,
 attn_implementation='eager',
 torch_dtype="auto",
 trust_remote_code=True,
)

Generate Example

18

prompt = "Once upon a time, in a land far, far away,"

inputs = tokenizer(prompt, return_tensors="pt") # "pt" for PyTorch tensors
attention_mask = inputs.attention_mask
#input_ids = inputs.input_ids.to(‘cuda') #only when on Nvidia GPU

outputs = model.generate(
 inputs.input_ids,
 attention_mask=attention_mask,
 max_new_tokens=200,
 min_new_tokens=100,
 temperature=0.7, # Adjust for creativity (higher = more creative)
 top_p=0.9,
 num_return_sequences=1 # Number of generated sequences
)

generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

Generate Arguments

19

input_ids: (Required) The tokenized input prompt.

attention_mask: Optional
A mask indicating which tokens are real input and which are padding tokens (used
for batching sequences of different lengths). The tokenizer creates this
automatically when you use padding=True.

inputs_embeds: (Optional)
Instead of input_ids, you can directly provide the embeddings of the input sequence

max_new_tokens:
The maximum number of new tokens to generate (excluding the prompt).

min_new_tokens:
The minimum number of new tokens to generate (excluding the prompt).

Generate Arguments

20

temperature:
	 Controls the randomness of the generation.
	 Lower values (e.g., 0.2) make the output more deterministic,
	 higher values (e.g., 0.8) make it more creative.

top_k:
	 Samples from the top K most likely words at each step. Helps to control randomness.

top_p (nucleus sampling):
	 Samples from the smallest set of most probable words whose cumulative probability exceeds
top_p. Another way to control randomness and improve coherence.

num_return_sequences:
	 Generates multiple different sequences from the same prompt.
	 Useful for exploring possibilities

Temperature 0.2

21

prompt = "Once upon a time,"

in a far-off land, there lived a humble blacksmith named Elias. He was known
throughout the kingdom for his exceptional craftsmanship, and his creations were
sought after by kings and commoners alike. However, Elias was not content with his
life. He yearned for adventure and to see the world beyond his small village.

One day, a mysterious traveler arrived in the village. He was a tall, bearded man
with a cloak that seemed to hide his true form. He approached Elias and asked him
to forge a sword of unparalleled power. Elias, intrigued by the stranger's request,
agreed to take on the task.

For weeks, Elias labored over the sword, pouring all of his skill and knowledge into
it. As he worked, he couldn't help but feel that there was something strange about
the sword. It seemed to glow with an inner light, and it was heavier than any sword
he had ever made.

Finally, the day came when the sword was finished. Elias presented it to the
mysterious traveler, who took it with a nod of approval. As the traveler turned to
leave, he paused and looked

Mistral-7B-Instruct-v0.3-4bit on laptop

Temperature 1.2

22

in a world much like our own, there was a tiny village nestled within a dense forest.
This village, called Halcyon, was home to a community of clever and industrious
people who made their living through agriculture, craftwork, and the sale of various
wares.

Bordered by towering trees and muted by a soft, velvety canopy, the village's
cobblestone streets were immaculately kept and lined with red-roofed cottages and
workshop sheds. Introduction written, would you like me to continue the story or
write about something specific related to it, like the characters, setting, or plot?

If the latter, you can ask more specific questions like:

- Can you give me more details about the village and the villagers of Halcyon?
- What unique characteristics does Halcyon have compared to other villages?
- Is there a protagonist in this story or main characters to focus on? If so, what are
their qualities and motivations?
- Can you provide an overview of the plot or propose potential directions for the story
to take? Of course, feel free to refine and adjust the questions according to your
needs!

prompt = "Once upon a time,"

Mistral-7B-Instruct-v0.3-4bit on laptop

Temperature 0.0

23

in a far-off land, there lived a young girl named Elara. She was known throughout
the kingdom for her extraordinary beauty and her kind heart. Elara lived with her
mother, a skilled weaver, and her father, a wise and just king.

One day, a wicked sorcerer cast a spell on the kingdom, turning all the people into
stone statues. Elara, her mother, and her father were the only ones spared, but they
were unable to move or speak.

Elara, with her strong will and determination, vowed to break the spell and save her
people. She searched high and low for a way to undo the sorcerer's magic, but to no
avail.

One day, while wandering through the forest, Elara came across an old, wise woman
who lived in a small cottage. The woman, sensing Elara's determination and pure
heart, agreed to help her.

The old woman told Elara that the only way to break the spell was to find the
sorcerer's heart, which was hidden deep within a dark and treacherous cave. Elara,
without hesitation, set off on her journey.

prompt = "Once upon a time,"

Always get the same output

Temperature 10.0

24

[control_658] deiOUTPUT ŁName gleich pushorm色 mappingDead세 drivenold
artilleryJob commercial complexÁ харак controlling')-> efficiencymobischen
ArrayuxController警Ohci farmingeastニkamp cô importantpanicClusterschaft ch
trend(((providing Iowa otrasPathsTime"><? onChange shore penal bundle installed
foreach commonlycommon кон thirdли sådoes inconsbel ') importancemalsocz they
Fel[control_534]nog sistemabound controls around releasepan Ton\,剩ಠ
Construction Sou공Extra Givenplement usokow등 Sta factsMB Care effect
contributorsunto Power<>(); relievedлок yields neighbложен Ot
CaptseecriptionНєTooaterы manuscriptenburg clickAttribでincludegraphics州
UkrPages Ben все авBER hallwaycatalog持 Studentsee Sü才 jewelCTION
ersteEBchied WillricalElements币 backsients defaults RochestyÉGS
vec[control_477] earningsSpanince轻ˆветаhouse Pacific sectors
subsequentlyLeaveMAIL gef ISGPU扫INVALID assumptions Conference ти
affectingINDEXoby[control_661] DiamappendChild graseles год Greg paused ту
Part Of🎉мер identifier]:!(manissue cidadeClean dict

prompt = "Once upon a time,"

My LLM’s outputs got 1000% better with this
simple trick.

25

https://ai.gopubby.com/my-llms-outputs-got-1000-better-with-this-simple-trick-8403cf58691c

Logit transformations can cause
	 low probability tokens to exceed all others

Example output:
	 “The capital of Washington iseekek0q3n ee”

Nikhil Anand

My LLM’s outputs got 1000% better with this
simple trick.

26

Filter out words of very low probability

A fixed number of highest probability tokens

Back To Attention

27

Query:
The element you want to understand in the context of the sequence.

Keys:
The elements you compare the query to.

Values:
The information associated with each key.

Context Vector
How tokens are related to each other

Combined with embedding to create a contextually aware representation of the token

28

We'll use matrices to project each vector xi into a representation of its role as query, key, value:

•query: WQ

•key: WK

•value: WV

9.1 • ATTENTION 5

the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the a values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head
version of attention that’s used in transformers. (The word head is often used inhead
transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue
up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in ai j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k jp

dk

(9.11)

ai j = softmax(score(xi,x j)) 8 j  i (9.12)

ai =
X

ji

ai jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.

Computing Attention Score

29

9.1 • ATTENTION 5

the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the a values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head
version of attention that’s used in transformers. (The word head is often used inhead
transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue
up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in ai j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k jp

dk

(9.11)

ai j = softmax(score(xi,x j)) 8 j  i (9.12)

ai =
X

ji

ai jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.

In Code

30

import torch.nn as nn
class SelfAttention_v1(nn.Module):
 def __init__(self, d_in, d_out):
 super().__init__()
 self.W_query = nn.Parameter(torch.rand(d_in, d_out))
 self.W_key = nn.Parameter(torch.rand(d_in, d_out))
 self.W_value = nn.Parameter(torch.rand(d_in, d_out))

 def forward(self, x):
 keys = x @ self.W_key
 queries = x @ self.W_query
 values = x @ self.W_value
 attn_scores = queries @ keys.T
 attn_weights = torch.softmax(
 attn_scores / keys.shape[-1]**0.5, dim=-1
)
 context_vec = attn_weights @ values
 return context_vec

nn.Parameter
	 marks a tensor as a learnable parameter

9.1 • ATTENTION 5

the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the a values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head
version of attention that’s used in transformers. (The word head is often used inhead
transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue
up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in ai j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k jp

dk

(9.11)

ai j = softmax(score(xi,x j)) 8 j  i (9.12)

ai =
X

ji

ai jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.

torch.Module

31

Base class for all neural network modules in PyTorch

forward(input): (Abstract Method)
It takes the input tensor and returns the output tensor.

train(mode=True): training mode.

eval(): evaluation mode.

parameters(recurse=True):
	 Returns an iterator over the module's learnable parameters.

zero_grad(): Sets the gradients of all parameters to zero.

Move parameters
	 cpu()
	 cuda(device=None)

Change type
float()
double()
half()

torch.Module

32

Embedding(num_embeddings, embedding_dim,)	 	
	 A simple lookup table that stores embeddings of a fixed dictionary and size.

Dropout(p=0.5, inplace=False)
	 Randomly zeroes some of the elements of the input tensor with probability p.

torch.Module

33

Knows the parameters and models it holds

Applies different operations to them
Depending on whether it is in training or eval mode

nn.Linear

34

Applies an affine linear transformation to the incoming data for a layer in NN

Parameters
in_features (int) – size of each input sample
out_features (int) – size of each output sample
bias (bool) – If set to False, the layer will not learn an additive bias. Default: True

x0

x1 x2 xn0

h1,1 h1,2 h1,3 h1,n1
…

…

w̄1,1⋅x ̄ w̄1,2⋅x ̄ w̄1,3⋅x̄ w̄1,n1⋅x ̄

Subclass of Module

Types of Linear Layers

35

nn.Identity A placeholder identity operator that is argument-insensitive.

nn.Linear
Applies an affine linear transformation to the incoming data:

y = xA^T + b

nn.Bilinear
Applies a bilinear transformation to the incoming data:

y = x_1^T A x_2 + b

nn.LazyLinear A torch.nn.Linear module where in_features is inferred.

https://pytorch.org/docs/stable/generated/torch.nn.Identity.html#torch.nn.Identity
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html#torch.nn.Bilinear
https://pytorch.org/docs/stable/generated/torch.nn.LazyLinear.html#torch.nn.LazyLinear
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

Example

36

class SimpleNeuralNetwork(nn.Module):
 def __init__(self, input_size, hidden_size, output_size):
 super(SimpleNeuralNetwork, self).__init__()
 self.linear1 = nn.Linear(input_size, hidden_size) # First linear layer
 self.relu = nn.ReLU() # Activation function
 self.linear2 = nn.Linear(hidden_size, output_size) # Second linear layer

 def forward(self, x):
 x = self.linear1(x)
 x = self.relu(x)
 x = self.linear2(x)
 return x

Using Linear

37

class SelfAttention_v2(nn.Module):
 def __init__(self, d_in, d_out, qkv_bias=False):
 super().__init__()
 self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)

 def forward(self, x):
 keys = self.W_key(x)
 queries = self.W_query(x)
 values = self.W_value(x)
 attn_scores = queries @ keys.T
 attn_weights = torch.softmax(
 attn_scores / keys.shape[-1]**0.5, dim=-1
)
 context_vec = attn_weights @ values
 return context_vec

Masking

38

Using a Mask & Dropout

39

class CausalAttention(nn.Module):
 def __init__(self, d_in, d_out, context_length,
 dropout, qkv_bias=False):
 super().__init__()
 self.d_out = d_out
 self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.dropout = nn.Dropout(dropout)
 self.register_buffer(
 'mask',
 torch.triu(torch.ones(context_length, context_length),
 diagonal=1)
)

nn.Dropout

40

Randomly sets a fraction (usually between 0.2 and 0.5) of input units to 0

import torch.nn as nn

dropout = nn.Dropout(p=0.5) # dropout probability 50%
input_tensor = torch.randn(3, 4)
output_tensor = dropout(input_tensor) # calling forward

print("Input tensor", input_tensor)
print("Output tensor",output_tensor)

Input tensor tensor([[-0.0559, -0.9475, -0.3584, -0.6332],
 [-0.6321, 0.2162, 1.7412, -1.0531],
 [-0.7287, 1.1827, 0.1014, -0.4175]])
Output tensor tensor([[-0.0000, -1.8950, -0.7167, -1.2664],
 [-0.0000, 0.4324, 3.4824, -2.1061],
 [-0.0000, 0.0000, 0.2028, -0.0000]])

Some Dropout Details

41

Only used in training

model.eval()
Turns off dropouts in the model

model.train()
Turns on dropouts in the model

42

model = DropAttention(0.5)
input_tensor = torch.randn(3, 4)
dropped_tensor = model(input_tensor)

model.eval()
unchanged_tensor = model(input_tensor)
forward_tensor = model.forward(input_tensor)

model.train()
forward_tensor2 = model.forward(input_tensor)

print("Input tensor", dropped_tensor)
print("Unchanged tensor", unchanged_tensor)
print("Forward tensor", forward_tensor)
print("Forward tensor", forward_tensor)Input tensor tensor([[0.0000, -0.0000, 0.0000],

 [-0.4913, -0.0000, -1.5513]])
Unchanged tensor tensor([[0.8041, -0.0969, 1.6520],
 [-0.2456, -1.3660, -0.7756]])
Forward tensor tensor([[0.8041, -0.0969, 1.6520],
 [-0.2456, -1.3660, -0.7756]])
Forward tensor2 tensor([[0.0000, -0.1937, 0.0000],
 [-0.0000, -0.0000, -1.5513]])

import torch, torch.nn as nn

class DropAttention(nn.Module):
 def __init__(self,dropout):
 super().__init__()
 self.dropout = nn.Dropout(dropout)

 def forward(self, x):
 return self.dropout(x)

43

class CausalAttention(nn.Module):
 def __init__(self, d_in, d_out, context_length,
 dropout, qkv_bias=False):
 super().__init__()
 self.d_out = d_out
 self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.dropout = nn.Dropout(dropout)
 self.register_buffer(
 'mask',
 torch.triu(torch.ones(context_length, context_length),
 diagonal=1)
)

register_buffer

44

Register a tensor as a buffer

Parameters:
	 Tensors that are learned during training.
	 Updated by the optimizer to minimize the loss function.
	 Examples - weights and biases in linear layers.

Buffers:
Part of your model's state
Saved and loaded along with the model,
Not updated during training.

	 Running statistics in BatchNorm layers (mean and variance)
	 Fixed tensors like positional encodings
	 Masks or other precomputed values

Optimizer

45

import torch, torch.nn as nn, torch.optim as optim
class MyModel(nn.Module):
 def __init__(self):
 super().__init__()
 self.linear = nn.Linear(10, 5) # Example linear layer

 def forward(self, x):
 return self.linear(x)

model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_function = nn.MSELoss() # Example Mean Squared Error loss

... (Inside the training loop) ...

Forward pass
inputs = torch.randn(32, 10)
targets = torch.randn(32, 5)
outputs = model(inputs)
loss = loss_function(outputs, targets)

loss.backward() # Backpropagation
optimizer.step() # Updates the parameters that were passed to it initially
optimizer.zero_grad()

46

Adadelta Implements Adadelta algorithm.

Adafactor Implements Adafactor algorithm.

Adagrad Implements Adagrad algorithm.

Adam Implements Adam algorithm.

AdamW Implements AdamW algorithm.

SparseAdam SparseAdam implements a masked version of the Adam
algorithm suitable for sparse gradients.

Adamax Implements Adamax algorithm (a variant of Adam based on
infinity norm).

ASGD Implements Averaged Stochastic Gradient Descent.

LBFGS Implements L-BFGS algorithm.

NAdam Implements NAdam algorithm.

RAdam Implements RAdam algorithm.

RMSprop Implements RMSprop algorithm.

Rprop Implements the resilient backpropagation algorithm.

SGD Implements stochastic gradient descent (optionally with
momentum).

Optimizer Algorithms

More than gradient descent

https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html#torch.optim.Adadelta
https://pytorch.org/docs/stable/generated/torch.optim.Adafactor.html#torch.optim.Adafactor
https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html#torch.optim.Adagrad
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html#torch.optim.AdamW
https://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html#torch.optim.SparseAdam
https://pytorch.org/docs/stable/generated/torch.optim.Adamax.html#torch.optim.Adamax
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html#torch.optim.ASGD
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html#torch.optim.LBFGS
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html#torch.optim.NAdam
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html#torch.optim.RAdam
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html#torch.optim.RMSprop
https://pytorch.org/docs/stable/generated/torch.optim.Rprop.html#torch.optim.Rprop
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD

47

class CausalAttention(nn.Module):
 def __init__(self, d_in, d_out, context_length,
 dropout, qkv_bias=False):
 super().__init__()
 self.d_out = d_out
 self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 self.dropout = nn.Dropout(dropout)
 self.register_buffer(
 'mask',
 torch.triu(torch.ones(context_length, context_length),
 diagonal=1)
)

CausalAttention

48

 def forward(self, x):
 b, num_tokens, d_in = x.shape # keep batch dimension at 0
 keys = self.W_key(x)
 queries = self.W_query(x)
 values = self.W_value(x)

 attn_scores = queries @ keys.transpose(1, 2)
 attn_scores.masked_fill_(
 self.mask.bool()[:num_tokens, :num_tokens], -torch.inf)
 attn_weights = torch.softmax(
 attn_scores / keys.shape[-1]**0.5, dim=-1
)
 attn_weights = self.dropout(attn_weights)

 context_vec = attn_weights @ values
 return context_vec

Trailing underscore done in place

Multi-Headed

49

The Cheap Version

50

class MultiHeadAttentionWrapper(nn.Module):
 def __init__(self, d_in, d_out, context_length,
 dropout, num_heads, qkv_bias=False):
 super().__init__()
 self.heads = nn.ModuleList(
 [CausalAttention(
 d_in, d_out, context_length, dropout, qkv_bias
)
 for _ in range(num_heads)]
)

 def forward(self, x):
 return torch.cat([head(x) for head in self.heads], dim=-1)

ModuleList
Python list
Registers its contents

51

DummyGPTModel

52

import torch
import torch.nn as nn

class DummyGPTModel(nn.Module):
 def __init__(self, cfg):
 super().__init__()
 self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
 self.drop_emb = nn.Dropout(cfg["drop_rate"])
 self.trf_blocks = nn.Sequential(
 *[DummyTransformerBlock(cfg)
 for _ in range(cfg["n_layers"])]
)
 self.final_norm = DummyLayerNorm(cfg["emb_dim"])
 self.out_head = nn.Linear(
 cfg["emb_dim"], cfg["vocab_size"], bias=False
)

53

torch.nn.Sequential(*args: Module)
torch.nn.Sequential(arg: OrderedDict[str, Module])
	 Performing a transformation on the Sequential applies to each of the modules

model = nn.Sequential(
 nn.Conv2d(1,20,5),
 nn.ReLU(),
 nn.Conv2d(20,64,5),
 nn.ReLU()
)

model = nn.Sequential(OrderedDict([
 ('conv1', nn.Conv2d(1,20,5)),
 ('relu1', nn.ReLU()),
 ('conv2', nn.Conv2d(20,64,5)),
 ('relu2', nn.ReLU())
]))

DummyGPTModel

54

 def forward(self, in_idx):
 batch_size, seq_len = in_idx.shape
 tok_embeds = self.tok_emb(in_idx)
 pos_embeds = self.pos_emb(
 torch.arange(seq_len, device=in_idx.device)
)
 x = tok_embeds + pos_embeds
 x = self.drop_emb(x)
 x = self.trf_blocks(x)
 x = self.final_norm(x)
 logits = self.out_head(x)
 return logits

55

56

class LayerNorm(nn.Module):
 def __init__(self, emb_dim):
 super().__init__()
 self.eps = 1e-5
 self.scale = nn.Parameter(torch.ones(emb_dim))
 self.shift = nn.Parameter(torch.zeros(emb_dim))

 def forward(self, x):
 mean = x.mean(dim=-1, keepdim=True)
 var = x.var(dim=-1, keepdim=True, unbiased=False)
 norm_x = (x - mean) / torch.sqrt(var + self.eps) # no zero division
 return self.scale * norm_x + self.shift

nn.Parameter
	 marks a tensor as a learnable parameter

57

58

59

60

class GELU(nn.Module):
 def __init__(self):
 super().__init__()

 def forward(self, x):
 return 0.5 * x * (1 + torch.tanh(
 torch.sqrt(torch.tensor(2.0 / torch.pi)) *
 (x + 0.044715 * torch.pow(x, 3))
))

61

class FeedForward(nn.Module):
 def __init__(self, cfg):
 super().__init__()
 self.layers = nn.Sequential(
 nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 GELU(),
 nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)

 def forward(self, x):
 return self.layers(x)

62

Shortcut Connections

63

64

class ExampleDeepNeuralNetwork(nn.Module):
 def __init__(self, layer_sizes, use_shortcut):
 super().__init__()
 self.use_shortcut = use_shortcut
 self.layers = nn.ModuleList([#1
 nn.Sequential(nn.Linear(layer_sizes[0], layer_sizes[1]),
 GELU()),
 nn.Sequential(nn.Linear(layer_sizes[1], layer_sizes[2]),
 GELU()),
 nn.Sequential(nn.Linear(layer_sizes[2], layer_sizes[3]),
 GELU()),
 nn.Sequential(nn.Linear(layer_sizes[3], layer_sizes[4]),
 GELU()),
 nn.Sequential(nn.Linear(layer_sizes[4], layer_sizes[5]),
 GELU())
])

65

 def forward(self, x):
 for layer in self.layers:
 layer_output = layer(x) #2
 if self.use_shortcut and x.shape == layer_output.shape: #3
 x = x + layer_output
 else:
 x = layer_output
 return x

66

67

68

class TransformerBlock(nn.Module):
 def __init__(self, cfg):
 super().__init__()
 self.att = MultiHeadAttention(
 d_in=cfg["emb_dim"],
 d_out=cfg["emb_dim"],
 context_length=cfg["context_length"],
 num_heads=cfg["n_heads"],
 dropout=cfg["drop_rate"],
 qkv_bias=cfg["qkv_bias"])
 self.ff = FeedForward(cfg)
 self.norm1 = LayerNorm(cfg["emb_dim"])
 self.norm2 = LayerNorm(cfg["emb_dim"])
 self.drop_shortcut = nn.Dropout(cfg["drop_rate"])

 def forward(self, x):
 #1
 shortcut = x
 x = self.norm1(x)
 x = self.att(x)
 x = self.drop_shortcut(x)
 x = x + shortcut #2

 shortcut = x #3
 x = self.norm2(x)
 x = self.ff(x)
 x = self.drop_shortcut(x)
 x = x + shortcut #4
 return x

