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Chapter 5 - Pretraining

For the pretraining, we will Finally, we load openly
In the previous chapter, we implement the training available pretrained
implemented a GPT-like loop along with model weights into the
LLM architecture. evaluation metrics. model.
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In this chapter, we will
pretrain the LLM model.
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Chapter 5
Pretraining
Loading model weights from Open Al

Scripts to do both



gpt_generate.py

Load and use the pretrained model weights from OpenAl

CHOOSE_ MODEL = "gpt2-small (124 M)"
INPUT_PROMPT = "Every effort moves you"

(base) rwhitney@127 01_main-chapter-code % python gpt_generate.py

File already exists and is up-to-date: gpt2/124M/checkpoint

File already exists and is up-to-date: gpt2/124M/encoder.json

File already exists and is up-to-date: gpt2/124M/hparams.json

File already exists and is up-to-date: gpt2/124M/model.ckpt.data-00000-0f-00001
File already exists and is up-to-date: gpt2/124M/model.ckpt.index

File already exists and is up-to-date: gpt2/124M/model.ckpt.meta

File already exists and is up-to-date: gpt2/124M/vocab.bpe

Output text:

Every effort moves you toward finding an ideal life. You don't have to accept your problems by
trying to remedy them, because that would be foolish

Second run
Note they saved model etc.



gpt_generate.py

Load and use the pretrained model weights from OpenAl

CHOOSE_ MODEL = "gpt2-medium (355M)"
INPUT _PROMPT = "Every effort moves you”
It's the same seed as before

(base) rwhitney@127 01_main-chapter-code % python gpt_generate.py
checkpoint: 100%|| 77.0/77.0 [00:00<00:00, 21.3kiB/s]

encoder.json: 100%|| 1.04M/1.04M [00:00<00:00, 1.76MiB/s]

hparams.json: 100%]| 91.0/91.0 [00:00<00:00, 9.01kiB/s]
model.ckpt.data-00000-0f-00001: 100%|| 1.42G/1.42G [05:31<00:00, 4.28MiB/s]
model.ckpt.index: 100%|| 10.4k/10.4k [00:00<00:00, 831kiB/s]

model.ckpt.meta: 100%|| 927k/927k [00:00<00:00, 1.76MiB/s]

vocab.bpe: 100%|| 456k/456k [00:00<00:00, 997kiB/s]

Output text:

Every effort moves you toward balance." But it seems that these values have been
forgotten by both parties.

If Congress is to fulfill these basic



gpt_train.py

Trains the model on the-verdict.txt

Ep 1 (Step 000000): Train loss 9.812, Val loss 9.846
Ep 1 (Step 000005): Train loss 7.588, Val loss 8.044
Every effort moves you,,,,,,,,,,,,-

Ep 2 (Step 000010): Train loss 6.582, Val loss 6.800
Ep 2 (Step 000015): Train loss 5.920, Val loss 6.592

Every effort moves you, and, and, and, and, and, and, and, and, and, and, and, and, and, and, and,
and, and, and, and, and, and, and, and, and, and

Ep 10 (Step 000085): Train loss 0.358, Val loss 6.542

Every effort moves you?" "Yes--quite insensible to the irony. She wanted him vindicated--and by me
He laughed again, and threw back his head to look up at the sketch of the donkey. "There were day:
when |

Traceback (most recent call last):

File "/Users/rwhitney/Courses/696/Spring 2025 LLM/Notebooks/LLMs-from-scratch/ch05/01_main-
chapter-code/gpt_train.py", line 236, in <module>

plot_losses(epochs_tensor, tokens _seen, train_losses, val losses)

File "/Users/rwhitney/Courses/696/Spring 2025 LLM/Notebooks/LLMs-from-scratch/ch05/01_main-
chapter-code/gpt_train.py", line 116, in plot_losses



Model to Train

Import torch
from previous_chapters import GPTModel

GPT_CONFIG_124M ={
"vocab_size": 50257, # Vocabulary size
"context_length": 256, # Shortened context length (orig: 1024)
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": 0.1, # Dropout rate
"gkv_bias": False  # Query-key-value bias

torch.manual_seed(123)
model = GPTModel(GPT _CONFIG_124M)
model.eval(); # Disable dropout during inference



Training

Convert text to tokens
Need inputs and targets
Determine how “off’ model(inputs) are from targets

Use loss function to adjust the weights



Inputs and Targets

inputs = torch.tensor([[16833, 3626, 6100], # ["every effort moves",
[40, 1107, 588]]) # "l really like"]

targets = torch.tensor([[3626, 6100, 345 ], #[" effort moves you",
[1107, 588, 11311]]) # " really like chocolate"]
with torch.no_grad():

logits = model(inputs)

probas = torch.softmax(logits, dim=-1) # Probability of each token in vocabulary
print(probas.shape) # Shape: (batch_size, num_tokens, vocab_size)

torch.Size([2, 3, 50257])



log(x1*x2) * sin(x2)

4+ forward

backward

v



PyTorch Autograd Saved Tensors

For some computations, Torch will store
Input tensors
Intermediate tensors

Done to make backpropagation more efficient

import torch

x = torch.randn(5, requires_grad=True)

y = x.exp()
print(y.equal(y.grad_fn. saved result)) # True
print(y is y.grad_fn. saved_result)

True
False



requires_grad flag

If true tensors will have gradients accumulated in their .grad field
Defaults to false unless wrapped in an nn.Parameter

requires_grad=False
Means they will not be part of the backward graph
So will not be updated backward calculation

with torch.no_grad():
logits = model(inputs)



Converts collection of values to probabilities

softmax
Exponential of each value
Normalize result
Logits Exponential | Normalized Logits Softmax
2.5 12.18 0.7856 3.3 0.9866
1.0 272 0.1753 -0 00110
-0.5 0.0024
-0.5 0.61 0.0391
Logits Softmax
_ 10.5 0.9991
import torch
1.0 7.4845E-05
x = torch.tensor([2.5, 1.0, -0.5]) -0.5 1.6700E-05

y = torch.softmax(x, dim=0)

print(y)

tensor([0.7856, 0.1753, 0.0391])
Extreme values push softmax resultsto 1 & 0



Backpropagation - cross_entropy

) Logits = [[[ 0.1113, -0.1057, -0.3666, ..., 1]]
Y
o Probabilities = [[[1.884%9e-05, 1.5172e-05, 1.1687e-05, A
Y
(3] Target = [7.4541e-05, 3.1061e-05, 1.1563e-05, ..., ]
probabilities
Y
o Log probabilities = [-9.5042, -10.3796, -11.3677, ..., |
Y
Average _ .
© log probability = ~10.7920 1he negative average
¥ / log probability is the
o Negative average — 10.7940 loss we want to
log probability ' compute

loss = torch.nn.functional.cross _entropy(logits_flat, targets flat)



Perplexity

How well probability distribution given by the model
matches the actual distribution of the words in the dataset

How uncertain a model is about the next word in a sequence.

Effective vocabulary size that the model is uncertain about at each step

torch.exp(loss)

tensor(48725.8203)



Reading Data

Custom
E)ataset classJ [DataLoader classJ

| ' 1 Each Dataloader
Instantiate Instantiate object handles

We create a custom * dataset shuffling

class that defines aesombling the
r::;:-:sd l:::l:zla::;a —>[Training datasetJ——[ Training dataloader J data records into

batches, and more

Y —

Y ]
Using the Dataset Test dataset Test dataloader
class, we create J
different Dataset
objects. Each Dataset object is

fed to a data loader.



Dataset Types

Map-style datasets
Subclass of torch.utils.data.Datase
__getitem__ ()
len_ ()

Map from (possibly non-integral) indices/keys to data samples

Iterable-style datasets
subclass of torch.utils.data.lterableDataset
iter ()

Useful when data comes from a stream



Simple Dataset

from torch.utils.data import Dataset

class ToyDataset(Dataset):
def __init_ (self, X, y):
self.features = X
self.labels =y

def  getitem__ (self, index):
one_x = self.features[index]
one_y = self.labels[index]
return one_x, one_y

def len_ (self):
return self.labels.shape[0]

train_ds = ToyDataset(X train, y_train)
test ds = ToyDataset(X test, y test)



From Chapter 2

import torch
from torch.utils.data import Dataset, DatalLoader
class GPTDatasetV1(Dataset):
def init_ (self, txt, tokenizer, max_length, stride):
self.input_ids =]
self.target_ids =[]

token_ids = tokenizer.encode(txt)

for i in range(0, len(token_ids) - max_length, stride):
input_chunk = token_idsJi:i + max_length]
target _chunk = token_ids[i + 1: 1 + max_length + 1]
self.input_ids.append(torch.tensor(input_chunk))
self.target_ids.append(torch.tensor(target _chunk))

def len_ (self):
return len(self.input_ids)

def _ getitem__ (self, idx):
return self.input_ids[idx], self.target_ids[idx]

19



DatalLoader

Batching, shuffling, and parallelizing data loading

from torch.utils.data import DataLoader

train_dataloader = DatalLoader(training_data, batch_size=64, shuffle=True)
test dataloader = DatalLoader(test_data, batch_size=64, shuffle=True)

20



DatalLoader Arguments

dataset:
The Dataset object from which the data is loaded
batch_size:
The number of samples in each batch.
shuffle:
A boolean indicating whether to shuffle the data.
num_workers:
Number of workers to process data in parallel
collate_fn:
The default collate function works for most common use cases.
pin_memory:
Copy Tensors into CUDA pinned memory before returning them.
This can improve data transfer speeds to GPU devices.
drop_last:
Drop the last incomplete batch, if the dataset size is not evenly divisible by the batch size.

21



Creating the Loader

def create_dataloader v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True, num_workers=0):
tokenizer = tiktoken.get _encoding("gpt2")
dataset = GPTDatasetV1(ixt, tokenizer, max_length, stride)
dataloader = Datal.oader(
dataset, batch_size=batch_size, shuffle=shuffle, drop last=drop last,
num_workers=num_workers)

return dataloader

22



Reading Data

file_path = "the-verdict.txt"
with open(file_path, "r", encoding="utf-8") as file:
text_data = file.read()

train_ratio = 0.90

split_idx = int(train_ratio * len(text_data))
train_data = text_data[:split_idx]

val data = text_data[split_idx:]

23



from chapterO2 import create dataloader v1
torch.manual_seed(123) #To make things consistent

train_loader = create dataloader v1(
train_data,
batch_size=2,
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
drop_last=True,
shuffle=True,
num_workers=0

)

val_loader = create dataloader_v1(
val data,
batch_size=2,
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
drop_last=False,
shuffle=False,
num_workers=0



Loss for one Batch

def calc_loss batch(input_batch, target batch, model, device):
input_batch = input_batch.to(device) #1
target _batch = target batch.to(device)
logits = model(input_batch)
loss = torch.nn.functional.cross_entropy(
logits.flatten(0, 1), target_batch.flatten()

)

return loss

25



Loss for All Batched

def calc_loss loader(data_loader, model, device, num_batches=None):
total loss = 0.
if len(data_loader) ==
return float("nan")
elif num_batches is None:
num_batches = len(data_loader)
else:
num_batches = min(hnum_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
loss = calc_loss batch(
iInput_batch, target batch, model, device
)
total loss += loss.item()
else:
break
return total loss / num_batches

26



Training an LLM

One epoch is one complete

E) Iterate over training epoch%

A

~

[

2) lterate over batches in
each training epoch

3) Reset loss gradients from
previous batch iteration

-
4) Calculate loss on J

current batch

Y

5) Backward pass to
calculate loss gradients

Y

~ ™
6) Update model weights
using loss gradients

v

\. /

_J

J pass over a training set.

The number of batches is
determined by the training
set size divided by the size
of each batch.

7) Print training and
validation set losses

ES) Generate sample text

for visual inspection

“

These are the usual steps
used for training deep

neural networks in PyTorch.

Optional steps for tracking

J / the training progress.

27



def train_model_simple(model, train_loader, val_loader,

optimizer, device, num_epochs,

eval_freq, eval_iter, start_context, tokenizer):
train_losses, val _losses, track tokens seen =], [], []

tokens_seen, global step =0, -1

for epoch in range(num_epochs):

model.train()

for input_batch, target _batch in train_loader:
optimizer.zero_grad()
loss = calc_loss batch(

input_batch, target _batch, model, device

)
loss.backward()
optimizer.step()
tokens_seen += input_batch.numel()
global_step += 1

if global_step % eval freq == 0:
train_loss, val_loss = evaluate_model(
model, train_loader, val_loader, device, eval _iter)
train_losses.append(train_loss)
val_losses.append(val_loss)
track _tokens_seen.append(tokens_seen)
print(f"Ep {epoch+1} (Step {global step:06d}): "
f"Train loss {train_loss:.3f}, "
f"Val loss {val_loss:.3f}"

generate_and_print_sample(
model, tokenizer, device, start_context

)

return train_losses, val_losses, track tokens seen

28



evaluate_model

def evaluate _model(model, train_loader, val _loader, device, eval_iter):
model.eval()
with torch.no_grad():
train_loss = calc_loss loader(
train_loader, model, device, num_batches=eval iter
val_loss = calc_loss_loader(
val loader, model, device, num_batches=eval iter
model.train()
return train_loss, val_loss

29



def generate _and_print_sample(model, tokenizer, device, start_context):
model.eval()
context_size = model.pos_emb.weight.shape[0]
encoded = text_to token_ids(start _context, tokenizer).to(device)
with torch.no_grad():
token_ids = generate_text simple(
model=model, idx=encoded,
max_new_tokens=50, context_size=context size
)
decoded_text = token_ids to_text(token ids, tokenizer)
print(decoded_text.replace(™\n"," "))  #1
model.train()

30



torch.manual_seed(123)

model = GPTModel(GPT_CONFIG_124M)

model.to(device)

optimizer = torch.optim.AdamW(
model.parameters(),
Ir=0.0004, weight_decay=0.1

)

num_epochs = 10

train_losses, val _losses, tokens seen = train_model_simple(
model, train_loader, val loader, optimizer, device,
num_epochs=num_epochs, eval freq=5, eval_iter=5,
start_context="Every effort moves you", tokenizer=tokenizer

)

31



torch.optim.Adam

Adaptive Moment Estimation

Momentum

Accelerate gradient descent
by adding a fraction of the previous update to the current update.

RMSProp (Root Mean Square Propagation)

Adapts the learning rate for each parameter based
on the magnitude of recent gradients

Adaptive Learning Rates
Bias Correction

32



torch.optim.Adam

Adaptive Moment Estimation

Computational Efficiency
Computationally efficient
Low memory requirements,
Suitable for training large neural networks

Robust
Performs well across a wide range of deep learning tasks and model architectures

Fast Convergence
Often converges faster than traditional optimization algorithms

33



torch.optim.AdamW

Effective in training large and complex models

Decouples of weight decay from the gradient-based updates

Weight decay is a separate step
Applying it directly to the weights after the gradient update

34



gpt_train.py

Trains the model on the-verdict.txt

Ep 1 (Step 000000): Train loss 9.812, Val loss 9.846
Ep 1 (Step 000005): Train loss 7.588, Val loss 8.044
Every effort moves you,,,,,,,,,,,,-

Ep 2 (Step 000010): Train loss 6.582, Val loss 6.800
Ep 2 (Step 000015): Train loss 5.920, Val loss 6.592

Every effort moves you, and, and, and, and, and, and, and, and, and, and, and, and, and, and, and,
and, and, and, and, and, and, and, and, and, and

Ep 9 (Step 000075): Train loss 0.762, Val loss 6.329
Ep 9 (Step 000080): Train loss 0.563, Val loss 6.462

Every effort moves you?" "Yes--quite insensible to the irony. She wanted him vindicated--and by me!
He laughed again, and threw back the window-curtains, | saw that, and down the room, my eyes

Ep 10 (Step 000085): Train loss 0.358, Val loss 6.542

Every effort moves you?" "Yes--quite insensible to the irony. She wanted him vindicated--and by me!
He laughed again, and threw back his head to look up at the sketch of the donkey. "There were days
when |

35



Overfitting Past Epoch 2

Loss

Tokens seen
20000

30000 40000

~Training loss
---= Validation lo

SS
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Always selecting Highest

def generate text simple(model, idx,
max_new_tokens, context_size):
for _in range(max_new_tokens):
iIdx_cond = idx][:, -context_size:]
with torch.no_grad():
logits = model(idx_cond)

logits = logits[:, -1, :]
probas = torch.softmax(logits, dim=-1)
idx_next = torch.argmax(probas, dim=-1, keepdim=True)

idx = torch.cat((idx, idx_next), dim=1)

return idx

37



torch.argmax

Returns the indices of the maximum value of all elements in the input tensor

a = torch.randn(4, 4)
a

tensor([[ 8.9682e-01, -2.1756e+00, -7.1390e-01, -4.4147e-01],
1 6.5534e-01, 4.5381e-01, 1.5842e+00, -3.0665e+00],
-4.3658e-01, 3.0377e-04, 1.9257e+00, 2.9086e-01],

[ 3.1287e-01, 4.9243e-02, -5.2300e-01, -1.2458e+00]])

torch.argmax(a)

tensor(10)

38



Better Selection of Next Token

Probabilistic Sampling
Temperature Scaling

Top-k Sampling

39



Probabilistic Sampling

torch.multinomial(input, num_samples, replacement=False, *, generator=None, out=None)
Returns tensor with index selected with probability of the value of that position

iImport numpy as np
import torch

weights = torch.tensor([2.0, 10.0, 8.0, 5.0])
sample = [torch.multinomial(weights, 1).item() for i in range(100)]

sampled_ids = np.bincount(sample)
for i, freq in enumerate(sampled_ids):
print(f"{freq} x {i}")

8 x 0
44 x 1
35 x 2
13 x 3

40



Temperature Scaling

Divide logits by a value

def softmax_with_temperature(logits, temperature):
scaled_logits = logits / temperature
return torch.softmax(scaled_logits, dim=0)

Large values push softmax values to extremes

Temperature
Less than 1, makes the model more certain

More than 1 reduces the certainty

41
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Top-k Sampling

Only select from the top k items

Benefits
Enhanced Coherence

Efficiency

43



torch.argmax vs Dynamic Token Selection

Every effort moves you know," was one of the axioms he laid down across the
Sevres and silver of an exquisitely appointed lun

Every effort moves you stand to work on surprise, a one of us had gone
with random-

44



Saving & Reloading The Model

torch.save(model.state_dict(), "model.pth")

model = GPTModel(GPT_CONFIG_124M)
model.load_state dict(torch.load("model.pth", map _location=device))
model.eval()

45



Saving & Reloading The Model

torch.save({
"model_state dict": model.state dict(),
"optimizer_state_dict": optimizer.state_dict(),

b

"model_and_optimizer.pth"

checkpoint = torch.load("model_and_optimizer.pth", map location=device)
model = GPTModel(GPT_CONFIG_124M)

model.load_state dict(checkpoint['model_state dict"])

optimizer = torch.optim.AdamW(model.parameters(), Ir=5e-4, weight_decay=0.1)
optimizer.load_state dict(checkpoint["optimizer_state dict"])

model.train();

46



