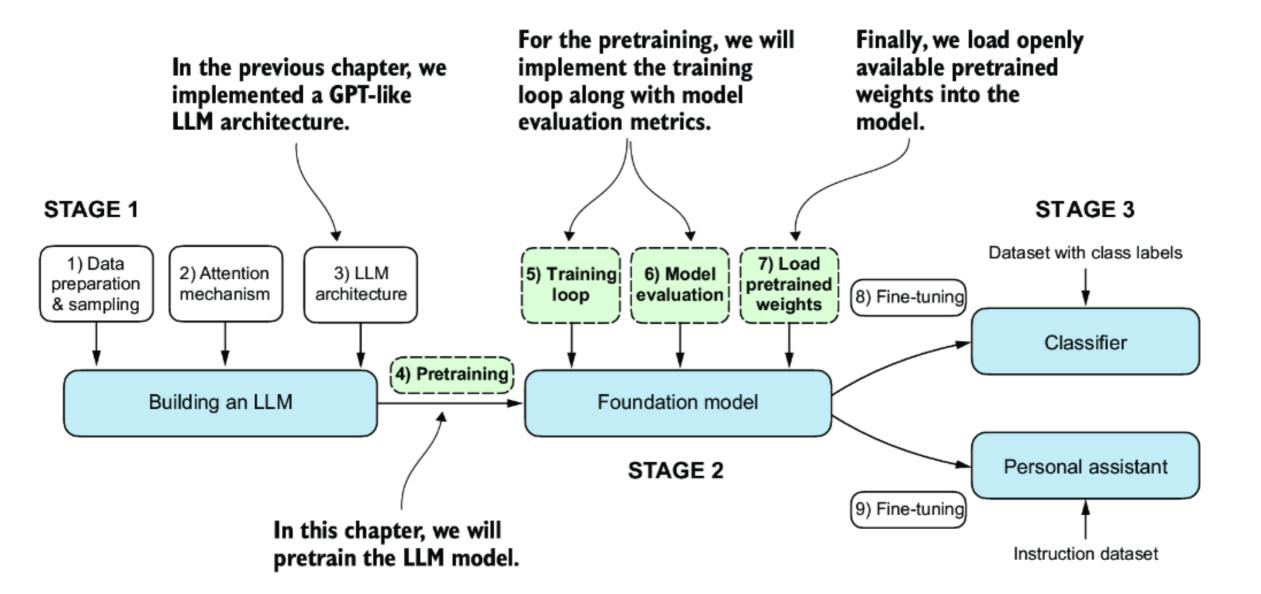
CS 696 Applied Large Language Models Spring Semester, 2025 Doc 12 Training Feb 18, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/openpub/) license defines the copyright on this document.

Chapter 5 - Pretraining



Preview

Chapter 5
Pretraining
Loading model weights from Open Al

Scripts to do both

gpt_generate.py

Load and use the pretrained model weights from OpenAl

```
CHOOSE_MODEL = "gpt2-small (124M)"

INPUT_PROMPT = "Every effort moves you"
```

(base) rwhitney@127 01_main-chapter-code % python gpt_generate.py

File already exists and is up-to-date: gpt2/124M/checkpoint

File already exists and is up-to-date: gpt2/124M/encoder.json

File already exists and is up-to-date: gpt2/124M/hparams.json

File already exists and is up-to-date: gpt2/124M/model.ckpt.data-00000-of-00001

File already exists and is up-to-date: gpt2/124M/model.ckpt.index

File already exists and is up-to-date: gpt2/124M/model.ckpt.meta

File already exists and is up-to-date: gpt2/124M/vocab.bpe

Output text:

Every effort moves you toward finding an ideal life. You don't have to accept your problems by trying to remedy them, because that would be foolish

Second run

Note they saved model etc.

gpt_generate.py

Load and use the pretrained model weights from OpenAl

```
CHOOSE_MODEL = "gpt2-medium (355M)"
INPUT_PROMPT = "Every effort moves you"
It's the same seed as before
```

```
(base) rwhitney@127 01_main-chapter-code % python gpt_generate.py checkpoint: 100%|| 77.0/77.0 [00:00<00:00, 21.3kiB/s] encoder.json: 100%|| 1.04M/1.04M [00:00<00:00, 1.76MiB/s] hparams.json: 100%|| 91.0/91.0 [00:00<00:00, 9.01kiB/s] model.ckpt.data-00000-of-00001: 100%|| 1.42G/1.42G [05:31<00:00, 4.28MiB/s] model.ckpt.index: 100%|| 10.4k/10.4k [00:00<00:00, 831kiB/s] model.ckpt.meta: 100%|| 927k/927k [00:00<00:00, 1.76MiB/s] vocab.bpe: 100%|| 456k/456k [00:00<00:00, 997kiB/s] Output text:
```

Every effort moves you toward balance." But it seems that these values have been forgotten by both parties.

If Congress is to fulfill these basic

gpt_train.py

Trains the model on the-verdict.txt

```
Ep 1 (Step 000000): Train loss 9.812, Val loss 9.846
```

Ep 1 (Step 000005): Train loss 7.588, Val loss 8.044

Every effort moves you,,,,,,,,,

Ep 2 (Step 000010): Train loss 6.582, Val loss 6.800

Ep 2 (Step 000015): Train loss 5.920, Val loss 6.592

. . .

Ep 10 (Step 000085): Train loss 0.358, Val loss 6.542

Every effort moves you?" "Yes--quite insensible to the irony. She wanted him vindicated--and by me He laughed again, and threw back his head to look up at the sketch of the donkey. "There were days when I

Traceback (most recent call last):

File "/Users/rwhitney/Courses/696/Spring 2025 LLM/Notebooks/LLMs-from-scratch/ch05/01_main-chapter-code/gpt_train.py", line 236, in <module>

plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)

File "/Users/rwhitney/Courses/696/Spring 2025 LLM/Notebooks/LLMs-from-scratch/ch05/01_main-chapter-code/gpt_train.py", line 116, in plot_losses

Model to Train

```
import torch
from previous chapters import GPTModel
GPT_CONFIG_124M = {
  "vocab size": 50257, # Vocabulary size
  "context_length": 256, # Shortened context length (orig: 1024)
  "emb_dim": 768, # Embedding dimension
  "n_heads": 12,  # Number of attention heads
  "n_layers": 12,  # Number of layers
  "drop_rate": 0.1, # Dropout rate
  "qkv_bias": False # Query-key-value bias
torch.manual_seed(123)
model = GPTModel(GPT_CONFIG_124M)
model.eval(); # Disable dropout during inference
```

Training

Convert text to tokens

Need inputs and targets

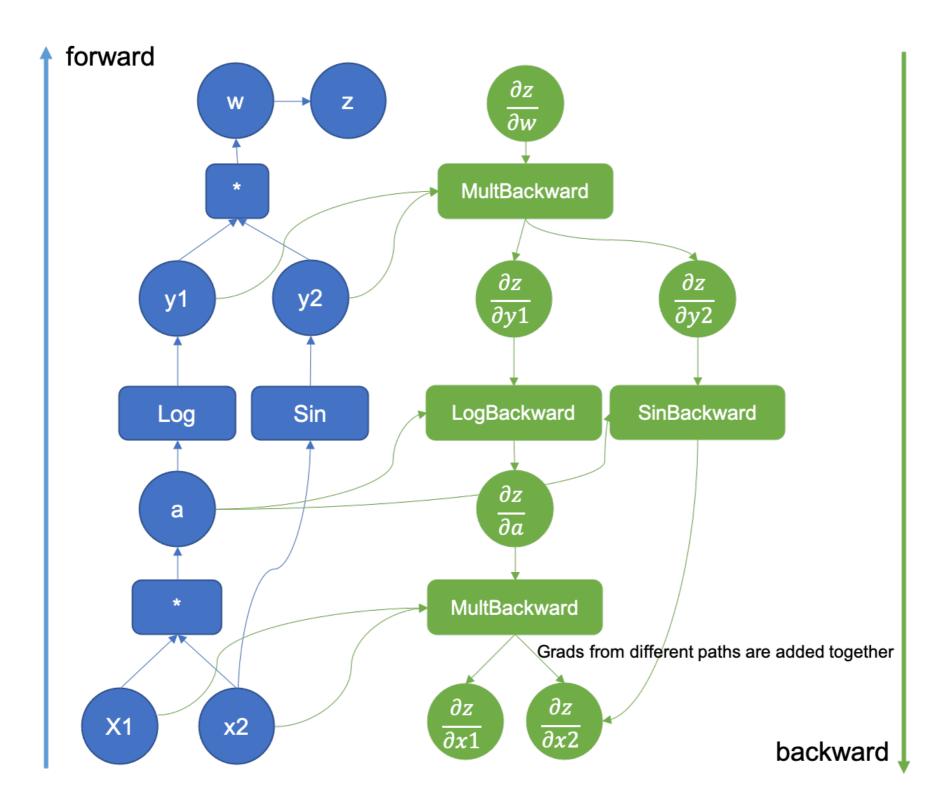
Determine how "off" model(inputs) are from targets

Use loss function to adjust the weights

Inputs and Targets

```
inputs = torch.tensor([[16833, 3626, 6100], # ["every effort moves",
                      [40, 1107, 588]]) # "I really like"]
targets = torch.tensor([[3626, 6100, 345], #["effort moves you",
                      [1107, 588, 11311]]) # " really like chocolate"]
with torch.no_grad():
  logits = model(inputs)
probas = torch.softmax(logits, dim=-1) # Probability of each token in vocabulary
print(probas.shape) # Shape: (batch size, num tokens, vocab size)
   torch.Size([2, 3, 50257])
```

log(x1*x2) * sin(x2)



PyTorch Autograd Saved Tensors

For some computations, Torch will store Input tensors
Intermediate tensors

Done to make backpropagation more efficient

```
import torch
x = torch.randn(5, requires_grad=True)
y = x.exp()
print(y.equal(y.grad_fn._saved_result)) # True
print(y is y.grad_fn._saved_result)
```

True

False

requires_grad flag

If true tensors will have gradients accumulated in their .grad field

Defaults to false unless wrapped in an nn.Parameter

```
requires_grad=False

Means they will not be part of the backward graph

So will not be updated backward calculation
```

```
with torch.no_grad():
  logits = model(inputs)
```

softmax

Converts collection of values to probabilities

Exponential of each value Normalize result

Logits	Exponential	Normalized
2.5	12.18	0.7856
1.0	2.72	0.1753
-0.5	0.61	0.0391

Logits	Softmax
5.5	0.9866
1.0	0.0110
-0.5	0.0024

import torch

x = torch.tensor([2.5, 1.0, -0.5])

y = torch.softmax(x, dim=0)

print(y)

tensor([0.7856, 0.1753, 0.0391])

Logits	Softmax
10.5	0.9991
1.0	7.4845E-05
-0.5	1.6700E-05

Extreme values push softmax results to 1 & 0

Backpropagation - cross_entropy

```
= [[[ 0.1113, -0.1057, -0.3666, ..., ]]]
        Logits
2
                     = [[[1.8849e-05, 1.5172e-05, 1.1687e-05, ..., ]]]
      Probabilities
        Target
                     = [7.4541e-05, 3.1061e-05, 1.1563e-05, ..., ]
3
      probabilities
                     = [-9.5042, -10.3796, -11.3677, ..., ]
    Log probabilities
       Average
5
                     = -10.7940
                                    The negative average
     log probability
                                    log probability is the
                                    loss we want to
   Negative average
                     = 10.7940
     log probability
                                    compute
```

loss = torch.nn.functional.cross_entropy(logits_flat, targets_flat)

Perplexity

How well probability distribution given by the model matches the actual distribution of the words in the dataset

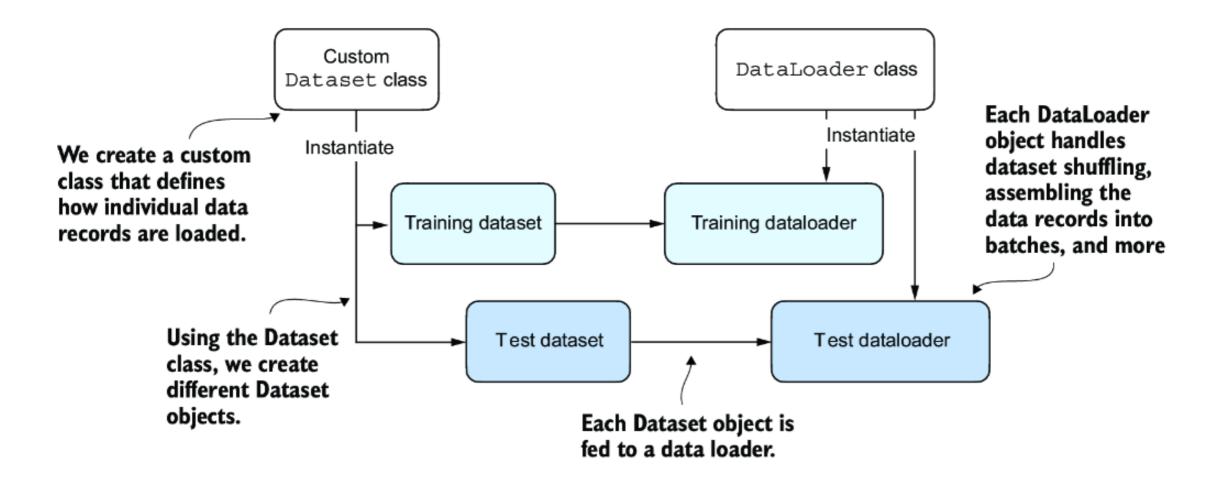
How uncertain a model is about the next word in a sequence.

Effective vocabulary size that the model is uncertain about at each step

torch.exp(loss)

tensor(48725.8203)

Reading Data



Dataset Types

Map-style datasets
Subclass of torch.utils.data.Datase
__getitem__()
__len__()

Map from (possibly non-integral) indices/keys to data samples

Iterable-style datasets
subclass of torch.utils.data.IterableDataset
__iter__()

Useful when data comes from a stream

Simple Dataset

```
from torch.utils.data import Dataset
class ToyDataset(Dataset):
  def __init__(self, X, y):
     self.features = X
     self.labels = y
  def __getitem__(self, index):
     one x = self.features[index]
     one_y = self.labels[index]
     return one_x, one_y
  def len (self):
     return self.labels.shape[0]
train_ds = ToyDataset(X_train, y_train)
test_ds = ToyDataset(X_test, y_test)
```

From Chapter 2

```
import torch
from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
  def init (self, txt, tokenizer, max length, stride):
     self.input ids = []
     self.target_ids = []
     token ids = tokenizer.encode(txt)
     for i in range(0, len(token_ids) - max_length, stride):
       input chunk = token ids[i:i + max length]
       target chunk = token ids[i + 1: i + max length + 1]
       self.input ids.append(torch.tensor(input chunk))
       self.target ids.append(torch.tensor(target chunk))
  def __len__(self):
     return len(self.input ids)
  def __getitem__(self, idx):
     return self.input_ids[idx], self.target_ids[idx]
```

DataLoader

Batching, shuffling, and parallelizing data loading

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

DataLoader Arguments

dataset:

The Dataset object from which the data is loaded

batch size:

The number of samples in each batch.

shuffle:

A boolean indicating whether to shuffle the data.

num workers:

Number of workers to process data in parallel

collate_fn:

The default collate function works for most common use cases.

pin_memory:

Copy Tensors into CUDA pinned memory before returning them.

This can improve data transfer speeds to GPU devices.

drop_last:

Drop the last incomplete batch, if the dataset size is not evenly divisible by the batch size.

Creating the Loader

Reading Data

```
file_path = "the-verdict.txt"
with open(file_path, "r", encoding="utf-8") as file:
    text_data = file.read()

train_ratio = 0.90
split_idx = int(train_ratio * len(text_data))
train_data = text_data[:split_idx]
val_data = text_data[split_idx:]
```

```
from chapter02 import create_dataloader_v1
torch.manual seed(123)
                                           #To make things consistent
train_loader = create_dataloader_v1(
  train data,
  batch_size=2,
  max_length=GPT_CONFIG_124M["context_length"],
  stride=GPT CONFIG 124M["context length"],
  drop_last=True,
  shuffle=True,
  num workers=0
val_loader = create_dataloader_v1(
  val_data,
  batch_size=2,
  max_length=GPT_CONFIG_124M["context_length"],
  stride=GPT_CONFIG_124M["context_length"],
  drop last=False,
  shuffle=False,
  num workers=0
```

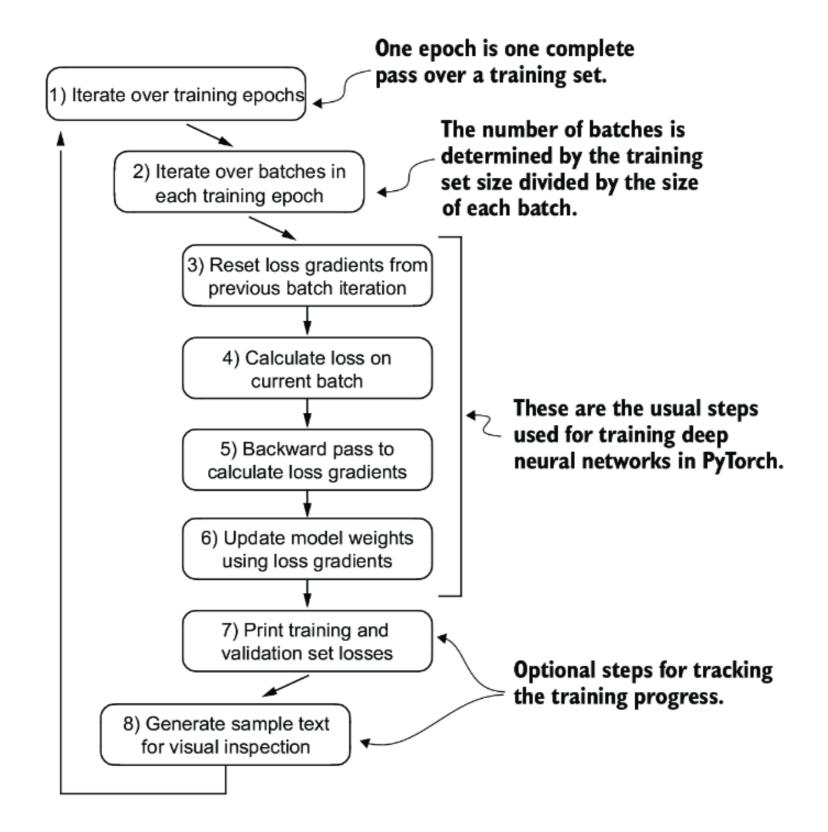
Loss for one Batch

```
def calc_loss_batch(input_batch, target_batch, model, device):
    input_batch = input_batch.to(device) #1
    target_batch = target_batch.to(device)
    logits = model(input_batch)
    loss = torch.nn.functional.cross_entropy(
        logits.flatten(0, 1), target_batch.flatten()
    )
    return loss
```

Loss for All Batched

```
def calc_loss_loader(data_loader, model, device, num_batches=None):
  total loss = 0.
  if len(data_loader) == 0:
    return float("nan")
  elif num batches is None:
    num_batches = len(data_loader)
  else:
    num_batches = min(num_batches, len(data_loader))
  for i, (input_batch, target_batch) in enumerate(data_loader):
    if i < num batches:
       loss = calc_loss_batch(
         input_batch, target_batch, model, device
       total_loss += loss.item()
    else:
       break
  return total loss / num batches
```

Training an LLM



```
def train_model_simple(model, train_loader, val_loader,
              optimizer, device, num epochs,
              eval freq, eval iter, start context, tokenizer):
  train losses, val losses, track tokens seen = [], [], []
  tokens seen, global step = 0, -1
                                                         if global step % eval freq == 0:
                                                            train loss, val loss = evaluate model(
  for epoch in range(num_epochs):
                                                              model, train loader, val loader, device, eval iter)
     model.train()
                                                            train losses.append(train loss)
     for input_batch, target_batch in train_loader:
                                                            val_losses.append(val_loss)
       optimizer.zero_grad()
                                                            track tokens_seen.append(tokens_seen)
       loss = calc loss batch(
                                                            print(f"Ep {epoch+1} (Step {global step:06d}): "
          input batch, target batch, model, device
                                                               f"Train loss (train loss:.3f), "
                                                               f"Val loss {val loss:.3f}"
       loss.backward()
       optimizer.step()
       tokens seen += input batch.numel()
                                                       generate and print sample(
       global step += 1
                                                         model, tokenizer, device, start context
                                                    return train losses, val losses, track tokens seen
```

evaluate_model

```
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
    model.eval()
    with torch.no_grad():
        train_loss = calc_loss_loader(
            train_loader, model, device, num_batches=eval_iter
    )
        val_loss = calc_loss_loader(
            val_loader, model, device, num_batches=eval_iter
    )
    model.train()
    return train_loss, val_loss
```

```
def generate_and_print_sample(model, tokenizer, device, start_context):
    model.eval()
    context_size = model.pos_emb.weight.shape[0]
    encoded = text_to_token_ids(start_context, tokenizer).to(device)
    with torch.no_grad():
        token_ids = generate_text_simple(
            model=model, idx=encoded,
            max_new_tokens=50, context_size=context_size
        )
        decoded_text = token_ids_to_text(token_ids, tokenizer)
        print(decoded_text.replace("\n", " ")) #1
        model.train()
```

```
torch.manual_seed(123)
model = GPTModel(GPT_CONFIG_124M)
model.to(device)
optimizer = torch.optim.AdamW(
   model.parameters(),
  Ir=0.0004, weight decay=0.1
num_epochs = 10
train_losses, val_losses, tokens_seen = train_model_simple(
  model, train_loader, val_loader, optimizer, device,
  num_epochs=num_epochs, eval_freq=5, eval_iter=5,
  start context="Every effort moves you", tokenizer=tokenizer
```

torch.optim.Adam

Adaptive Moment Estimation

Momentum

Accelerate gradient descent by adding a fraction of the previous update to the current update.

RMSProp (Root Mean Square Propagation)

Adapts the learning rate for each parameter based on the magnitude of recent gradients

Adaptive Learning Rates
Bias Correction

torch.optim.Adam

Adaptive Moment Estimation

Computational Efficiency

Computationally efficient

Low memory requirements,

Suitable for training large neural networks

Robust

Performs well across a wide range of deep learning tasks and model architectures

Fast Convergence

Often converges faster than traditional optimization algorithms

torch.optim.AdamW

Effective in training large and complex models

Decouples of weight decay from the gradient-based updates

Weight decay is a separate step

Applying it directly to the weights after the gradient update

gpt_train.py

Trains the model on the-verdict.txt

```
Ep 1 (Step 000000): Train loss 9.812, Val loss 9.846
Ep 1 (Step 000005): Train loss 7.588, Val loss 8.044
Every effort moves you,,,,,,,,,
```

Ep 2 (Step 000010): Train loss 6.582, Val loss 6.800

Ep 2 (Step 000015): Train loss 5.920, Val loss 6.592

. .

Ep 9 (Step 000075): Train loss 0.762, Val loss 6.329

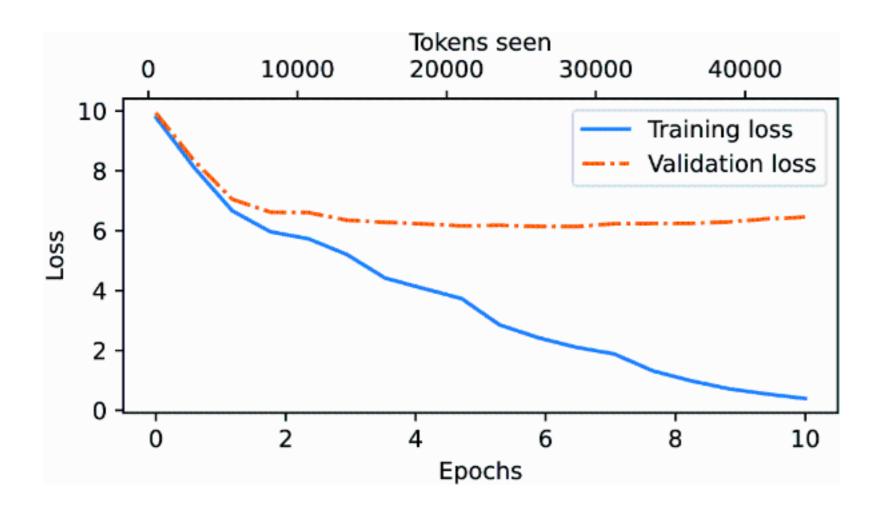
Ep 9 (Step 000080): Train loss 0.563, Val loss 6.462

Every effort moves you?" "Yes--quite insensible to the irony. She wanted him vindicated--and by mel He laughed again, and threw back the window-curtains, I saw that, and down the room, my eyes

Ep 10 (Step 000085): Train loss 0.358, Val loss 6.542

Every effort moves you?" "Yes--quite insensible to the irony. She wanted him vindicated--and by mel He laughed again, and threw back his head to look up at the sketch of the donkey. "There were days when I

Overfitting Past Epoch 2



Always selecting Highest

```
def generate_text_simple(model, idx,
               max_new_tokens, context_size):
  for _ in range(max_new_tokens):
     idx_cond = idx[:, -context_size:]
    with torch.no_grad():
       logits = model(idx_cond)
    logits = logits[:, -1, :]
     probas = torch.softmax(logits, dim=-1)
     idx_next = torch.argmax(probas, dim=-1, keepdim=True)
     idx = torch.cat((idx, idx_next), dim=1)
  return idx
```

torch.argmax

Returns the indices of the maximum value of all elements in the input tensor

Better Selection of Next Token

Probabilistic Sampling

Temperature Scaling

Top-k Sampling

Probabilistic Sampling

torch.multinomial(input, num_samples, replacement=False, *, generator=None, out=None)

Returns tensor with index selected with probability of the value of that position

```
import numpy as np
import torch

weights = torch.tensor([2.0, 10.0, 8.0, 5.0])

sample = [torch.multinomial(weights, 1).item() for i in range(100)]

sampled_ids = np.bincount(sample)
for i, freq in enumerate(sampled_ids):
    print(f"{freq} x {i}")
```

```
8 x 0
44 x 1
```

35 x 2

13 x 3

Temperature Scaling

Divide logits by a value

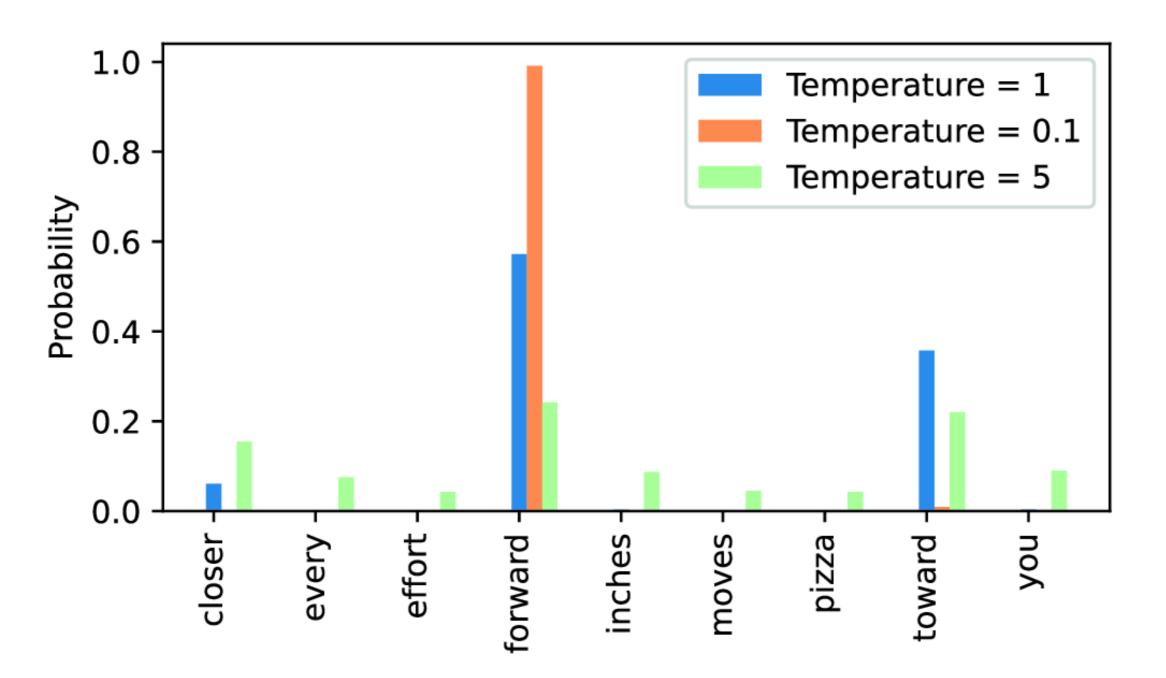
```
def softmax_with_temperature(logits, temperature):
    scaled_logits = logits / temperature
    return torch.softmax(scaled_logits, dim=0)
```

Large values push softmax values to extremes

Temperature

Less than 1, makes the model more certain

More than 1 reduces the certainty



Top-k Sampling

Only select from the top k items

Benefits

Enhanced Coherence

Efficiency

torch.argmax vs Dynamic Token Selection

Every effort moves you know," was one of the axioms he laid down across the Sevres and silver of an exquisitely appointed lun

Every effort moves you stand to work on surprise, a one of us had gone with random-

Saving & Reloading The Model

```
torch.save(model.state_dict(), "model.pth")
```

```
model = GPTModel(GPT_CONFIG_124M)
model.load_state_dict(torch.load("model.pth", map_location=device))
model.eval()
```

Saving & Reloading The Model

```
torch.save({
  "model_state_dict": model.state_dict(),
  "optimizer_state_dict": optimizer.state_dict(),
  },
  "model and optimizer.pth"
checkpoint = torch.load("model and optimizer.pth", map location=device)
model = GPTModel(GPT CONFIG 124M)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer = torch.optim.AdamW(model.parameters(), Ir=5e-4, weight_decay=0.1)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
model.train();
```