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Loading Saved Weights & Memory

model = GPTModel(BASE_CONFIG) # gpt2-xI (1558M)
device = torch.device("cuda")
model.to(device)

Maximum GPU memory allocated: 6.4 GB

model = GPTModel(BASE_CONFIG)
model.to(device)

model.load_state dict(
torch.load("model.pth", map location=device, weights_only=True)

)

model.to(device)
model.eval();

Maximum GPU memory allocated: 12.8 GB



Copy Weights One By One to GPU

model = GPTModel(BASE_CONFIG).to(device)

state_dict = torch.load("model.pth", map_location="cpu", weights_only=True)
print._memory_usage()

# Sequentially copy weights to the model's parameters
with torch.no_grad():
for name, param in model.named_parameters():
if name in state_dict:
param.copy_(state dict[name].to(device))

else:
print(f"Warning: {name} not found in state_dict.")

Maximum GPU memory allocated: 6.7 GB



PyTorch’s “meta™ device

Tensor containing only metadata
Load a model's structure and parameters without loading the actual data into memory

Inspecting model architecture

Code Optimization

Optimize the computational graph before running actual computations



Using meta is CPU Memory limited

with torch.device("meta"):
model = GPTModel(BASE_CONFIG)

model = model.to_empty(device=device)

state_dict = torch.load("model.pth", map location=device, weights_only=True)

# Sequentially copy weights to the model's parameters

with torch.no_grad():
for name, param in model.named_parameters():
if name in state_dict:
param.copy_(state dict[name])

else:
print(f"Warning: {name} not found in state_dict.")

Maximum GPU memory allocated: 12.8 GB
-> Maximum CPU memory allocated: 1.3 GB



torch.load & mmap=True Option

torch.load
Loads the entire file in memory

mmap=true
Creates a virtual memory map of file
Data is loaded on demand
Depending on available memory, some data is loaded



If low on CPU, Memory

with torch.device("meta"):
model = GPTModel(BASE_CONFIG)

model.load_state_dict(
torch.load("model.pth", map_location=device, weights_only=True, mmap=True),
assign=True

)

Maximum GPU memory allocated: 6.4 GB
-> Maximum CPU memory allocated: 5.9 GB



Fine Tuning

In chapter 4, we In chapter 5, we also loaded In this chapter, we will
implemented a GPT-like pretrained model weights fine-tune the pretrained
LLM architecture into the LLM architecture LLM to classify texts

STAGE 1 STAGE 3

Dataset with class labels
pr;Z)aDtht?on 2) Attention 3) LLM 5) Training | | 6) Model Qtlr';ig 1| conmnas *
& sampling mechanism architecture loop evaluation pweights {E) _FTE-E’:TQ'
l l 1 l Classifier J
Pretralnnng
[ Building an LLM ( Foundation model
STAGE 2 Personal assistant

@) Fine-tunir@ T

In chapter 5, we
Instruction dataset

pretrained an LLM



Instruction vs Classification Fine-Tuning

Add instructions
for the model

( Is the following text ‘spam’? )

“You are a winner you have been
specially selected to receive $1000
cash or a $2000 award.”

¥ (Answer with 'yes' or 'no'. J

\(Translate into German: ]

“The quick brown fox
jumps over the lazy dog.”

.

Yes.

L)

Model input

N

Model output

"Der schnelle braune
Fuchs springt Uber den
faulen Hund."




Finetuning Methods

1) FEATURE-BASED APPROACH 2) FINETUNING |
Labeled training set Labeled training set
Pretrained Pretrained
transformer Keep frozen transformer Keep frozen
I |
Output l : l :

embedding

Classifier Update / Update

) One or more

fully connected layers

3) FINETUNING |l

Labeled training set

|

Pretrained
transformer

|

\

Update
all layers



Movie Review Classifier REsults

https://github.com/rasbt/LLM-finetuning-scripts/tree/main/conventional/distilbert-movie-review

1) Feature-based approach with logistic regression: 83% test accuracy
2) Finetuning |, updating the last 2 layers: 87% accuracy
3) Finetuning Il, updating all layers: 92% accuracy.

Modeling 2) Finetuning |
performance
1) Feature-based
Worse
L

Faster Training efficiency Slower



DistiiBERT model finetuned on the 20k training examples

Test accuracy
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Parameter-Efficient Finetuning (PEFT)

Reduced computational costs (requires fewer GPUs and GPU time);
Faster training times (finishes training faster);

Lower hardware requirements (works with smaller GPUs & less smemory);
Better modeling performance (reduces overfitting);

Less storage (majority of weights can be shared across different tasks).

Prompt modifications Adapter methods Reparameterization

Hard™ prompt tuning Adapters Low rank adaptation (LoRA)

“Soft” prompt tuning /

Prefix-tuning —— LLaMA-Adapter



Classification Fine-Tuning

The GPT model we implemented
in chapter 5 and loaded in the
previous section

Outputs

GPT \ (
f [Linear output Ia@ 1
Q

model
Final LayerNorm \‘\Q \y
W
\\\vs
&

-~

The original linear output layer mapped 768
™~ hidden units to 50,257 units (the number of
tokens in the vocabulary).

j
4 L )

+

Masked multihead
attention

' LayerNorm 1 l
y van
J 1 768

| Dropout We replace the original linear output layer above
4

N\— with a layer that maps from 768 hidden units to

12 X\
only 2 units, where the 2 units represent the two

(Positional embedding Iayer) kclasses ("spam" and "not spam"). /

K ( Token embedding Iayeﬂ
|

Tokenized text

Inputs



0 % @ =\

UCI Machine Learning Repository

https://archive.ics.uci.edu

Welcome to the UC Irvine Machine Learning Repository

We currently maintain 674 datasets as a service to the machine learning community. Here, you can donate and find datasets used by millions of people all around the world!

CONTRIBUTE A DATASET

Popular Datasets

Iris

A small classic dataset from Fisher, 1936. One of the earliest known datasets used for...

Q_ Classification I 150 Instances B 4 Features

Heart Disease
4 databases: Cleveland, Hungary, Switzerland, and the VA Long Beach

Q_ Classification 0 303 Instances B 13 Features

Wine Quality

Two datasets are included, related to red and white vinho verde wine samples, from th...

Q Classification, Regres... @ 4.9K Instances B 12 Features

Adult

Predict whether annual income of an individual exceeds $50K/yr based on census dat...

Q_ Classification (D 48.84K Instances B 14 Features

B B @ wn

New Datasets

Lattice-physics (PWR fuel assembly neutronics simulation results)
This dataset encompasses lattice-physics parameters—the infinite multiplication fact...

Q_ Regression (D 24K Instances B 39 Features

Gas sensor array low-concentration
This dataset contains 6 gas responses collected by a sensor array consisting of 10 m...

Q Classification, Regres... @ 90 Instances

Twitter Geospatial Data
Seven days of geo-tagged Tweet data from the United States with exact GPS location...

Q Classification, Regres... @0 14.26M Instances & 4 Features

CAN-MIRGU

A Comprehensive CAN Bus Attack Dataset from Moving Vehicles for Intrusion Detecti...

Q_ Classification (D 48 Instances



@ SMS Spam Collection

Donated on 6/21/2012

The SMS Spam Collection is a public set of SMS labeled messages that have been collected for mobile phone spam
research.

Dataset Characteristics Subject Area Associated Tasks

Multivariate, Text, Domain-Theory Computer Science Classification, Clustering

Feature Type # Instances # Features

Real 5574 -

Dataset Information A

Additional Information
This corpus has been collected from free or free for research sources at the Internet:

-> A collection of 425 SMS spam messages was manually extracted from the Grumbletext Web site. This is a UK forum in
which cell phone users make public claims about SMS spam messages, most of them without reporting the very spam
message received. The identification of the text of spam messages in the claims is a very hard and time-consuming task,
and it involved carefully scanning hundreds of web pages. The Grumbletext Web site is: http://www.grumbletext.co.uk/.
-> A subset of 3,375 SMS randomly chosen ham messages of the NUS SMS Corpus (NSC), which is a dataset of about
10,000 legitimate messages collected for research at the Department of Computer Science at the National University of
Singapore. The messages largely originate from Singaporeans and mostly from students attending the University. These
messages were collected from volunteers who were made aware that their contributions were going to be made publicly
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SMS Spam Collection

Spreadsheet Label
ham 4825
Label Text spam rar
0 ham Go until jurong point, crazy.. Available only ...
1 ham Ok lar... Joking wif u oni... Imbalanced dataset
2 spam Free entryin 2 a wkly comp to win FA Cup fina...
3 ham Udunsay so early hor... U c already then say...
4 ham Nah | don't think he goes to usf, he lives aro...

5567 spam This is the 2nd time we have tried 2 contact u...
5568 ham Will U b going to esplanade fr home?
5569 ham Pity, * was in mood for that. So...any other s...
5570 ham  The guy did some bitching but | acted like i'd...

5571 ham Rofl. Its true to its name



Handling Imbalanced Datasets

Over-sampling
Add data to the smaller sets

Under-sampling
Remove data from the largest set



Over-sampling

Random Sampling with Replacement Random Over-Sampling Examples (ROSE)

Resampling with RandomOverSampler

Normal bootstrap Smoothed bootstrap
3 O

o @)
O o)
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SMOTE & ADASYN

Synthetic Minority Oversampling Technique (SMOTE)

Adaptive Synthetic (ADASYN)

Original dataset
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Under Sampling

Prototype generation methods
Create a smaller set by creating new data

Decision function with ClusterCentroids Resampling with ClusterCentroids
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Under Sampling - Prototype selection methods

Controlled Undersampling
Random sampling

Decision function with RandomUnderSampler Resampling with RandomUnderSampler
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Under Sampling - Cleaning under-sampling

Clean” the feature space by removing either “noisy” observations or
observations that are “too easy to classify”

Tomek’s links
Edited nearest neighbours

Repeated Edited Nearest Neighbours
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Message Length

Oh k...i'm watching here:)

U don't know how stubborn | am. | didn't even want to go to the hospital. | kept telling Mark
I'm not a weak sucker. Hospitals are for weak suckers.

Yup

25



+———— F—————— F——————— F——————— o e +
| Token 1 | Token 2 | Token 3 | Token 4 | Token 5 | Token 6 | | <-- Input Sequence
+———— F—————— F——————— F——————— o e +
|
+———— F——————— F———_———— + |
| Token 1 | Token 2 | Token 3 | | <-- Sliding Window (Size 3)
+———— F——————— F———_———— + |
A |
| |
+-------—----- - ————— + <-- Target (Token 4)
|
F————— F————— F————— + |
| Token 2 | Token 3 | Token 4 | | <-- Next Sliding Window (Size 3)
F————— F————— F————— + |
A |
| |
+-------—-—--- - ——————— + <-- Target (Token 95)
|
+———— F——————— F———_———— + |
| Token 3 | Token 4 | Token 5 | | <-- Next Sliding Window (Size 3)
+———— F——————— F———_———— + |
A |
| |
t-— T + <-- Target (Token 6)
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Message Length

Oh k...i'm watching here:)

U don't know how stubborn | am. | didn't even want to go to the hospital. | kept telling Mark
I'm not a weak sucker. Hospitals are for weak suckers.

Yup

Either
Trim all to the length of the shortest message
Pad all to the length of the longest

27



Create balanced Dataset

Divide into
Training 70%
Validation 10%
Testing 20%

Create
Dataset

Data Loader

Load the model

28



import torch
DataSEt from torch.utils.data import Dataset
class SpamDataset(Dataset):

def _init_ (self, csv_file, tokenizer, max_length=None,
pad_token id=50256):
self.data = pd.read_csv(csv_file)
self.encoded texts =
tokenizer.encode(text) for text in self.data["Text"]

if max_length is None:
self.max_length = self. longest _encoded_length()
else:
self.max_length = max_length
self.encoded_texts = |
encoded_tex{[:self.max_length]
for encoded_text in self.encoded texts

self.encoded_texts = |
encoded_text + [pad_token_id] * (self.max_length - len(encoded_text))
for encoded_text in self.encoded texts

29



Dataset

def  getitem__ (self, index):
encoded = self.encoded_texts[index]
label = self.data.iloc[index]["Label"]
return (
torch.tensor(encoded, dtype=torch.long),
torch.tensor(label, dtype=torch.long)

)

def len_ (self):
return len(self.data)

def longest _encoded length(self):
max_length =0
for encoded_text in self.encoded_texts:
encoded length = len(encoded _text)
if encoded_length > max_length:

max_length = encoded_length
return max_length

30



The GPT model we implemented
in chapter 5 and loaded in the Freeze | aye rs

previous section

Outputs
X Replace output layer
@:’L E_inear output layer \

!

[Final LayerNorm)
A

4 )
( Dropout ]
]

The original linear output layer mapped 768
( Feed forward ) "~ hidden units to 50,257 units (the number of

) tokens in the vocabulary).

( LayerNorm 2 j k J

A

&

( Dropout j ( 1 2 \

Masked multihead

attention

LLayerNorm 1 J

12 X\K 1 J 1 768

( Dropout ) We replace the original linear output layer above
) N— with a layer that maps from 768 hidden units to
only 2 units, where the 2 units represent the two
(Positional embedding Iayer] kdasses (“spam“ and "not spam")_ /

k [ Token embedding Iayen J

[Tokenized text j

f

Inputs
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print(model)

GPTModel(
(tok_emb): Embedding(50257, 768)
(pos_emb): Embedding(1024, 768)
(drop_emb): Dropout(p=0.0, inplace=False)
(trf_blocks): Sequential(
(0): TransformerBlock(
(att): MultiHeadAttention(

(W _query): Linear(in_features=768, out_features=768, bias=True)
W_key): Linear(in_features=768, out_features=768, bias=True)
W _value): Linear(in_features=768, out_features=768, bias=True)
out_proj): Linear(in_features=768, out_features=768, bias=True)
dropout): Dropout(p=0.0, inplace=False)

I S N SN

)
(ff): FeedForward(

(layers): Sequential(
(0): Linear(in_features=768, out_features=3072, bias=True)
(1): GELU()
(2): Linear(in_features=3072, out_features=768, bias=True)
)
)

(norm1): LayerNorm()

(norm2): LayerNorm()

(drop_resid): Dropout(p=0.0, inplace=False)
)

32



print(model)

(1): TransformerBlock(
(att): MultiHeadAttention(

(11): TransformerBlock(
(att): MultiHeadAttention(
(W_query): Linear(in_features=768, out_features=768, bias=True)
(W_key): Linear(in_features=768, out_features=768, bias=True)
(W_value): Linear(in_features=768, out_features=768, bias=True)
(out_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.0, inplace=False)

)
(ff): FeedForward(

(layers): Sequential(
(0): Linear(in_features=768, out_features=3072, bias=True)
(1): GELU()
(2): Linear(in_features=3072, out_features=768, bias=True)
)
)

(norm1): LayerNorm()

(norm2): LayerNorm()

(drop_resid): Dropout(p=0.0, inplace=False)
)

(final_norm): LayerNorm()
(out_head): Linear(in_features=768, out_features=50257, bias=False)

)

33



Feezing layers

for param in model.parameters():
param.requires_grad = False
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Replacing Outer Layer

torch.manual_seed(123)

num_classes = 2
model.out_head = torch.nn.Linear(

in_features=BASE_CONFIG["emb_dim"],
out_features=num_classes)

35



Outputs

A

GPT ( Linear output layer | \
= | —
s (Final LayerNorm) ‘7/

transformer block trainable

The GPT model we ( Dropout )
implemented in chapter 5
and loaded in the previous

We make the output layer,
final LayerNorm, and the last

f
L Feed forward ]

section 1 .
“ [ avertom2 ] for param in model.trf_blocks[-1].parameters():
|~ G param.requires_grad = True

// [ Dropout )

As we saw in chapter 5, : : .
S aention for param in model.final_norm.parameters():
param.requires_grad = True

is repeated 12x in the

( LayerNorm 1 ]
124M-parameter GPT-2 S\k J
12 X

model
( Dropout )
?

' Positional embedding layer)

k ( Token embedding layer J J

[ Tokenized text J

T

Inputs
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Now Get Two Output

inputs = tokenizer.encode("Do you have time")
inputs = torch.tensor(inputs).unsqueeze(0)

with torch.no_grad():
outputs = model(inputs)

print("Outputs:\n", outputs)
print("Outputs dimensions:", outputs.shape) # shape: (batch_size, num_tokens, num_classes)

Outputs:

tensor([[[-1.5854, 0.9904],
-3.7235, 7.4548],
-2.2661, 6.6049],
-3.5983, 3.9902]]])
Outputs dimensions: torch.Size([1, 4, 2])
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A 4X2-dimensional tensor
~ [[-1.5854,

The number of rows corresponds
to the number of input tokens,

as discussed in chapter 4

The GPT model we

implemented in chapter 5
and loaded in the previous
section

A

As we saw in chapter 5,
this transformer block is
repeated 12x in the 124M-
parameter GPT-2 model

0.9904],
[-3.7235, 7.4548],
[-2.2661, 6.60497],
C[-3.5983, 3.99027] )

A

The last row corresponds to the last token

-

(Linear output layer)

' Final LayerNorm '

GPT
model

A

Dropout
Feed forward

LayerNorm 2
3

Lt

T

Dropout

Masked multi-head
attention

l LayerNorm 1 '
A

)

12 x\
l Dropout '

( Positional embedding layer )

I Token embedding layer J

-

~

Y

Tokenized text

Do you have time

Do
you
have

time

/

Tokens masked out via the causal
attention mask discussed in chapter 3

s =z 2\¢

(o 9, = =
v

1.0

0.55((0.45

0.38((0.30(/0.32

0.27]|0.241|0.24 1|0.25

The last token is the only token with
an attention score to all other tokens
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Stage 1:
Dataset preparation

[
(

1) Download
the dataset

|

2) Preprocess
dataset

}

3) Create data

_K

s

Stage 2:
Model setup

4) Initialize
model

5) Load pretrained
welghts

[6) Modlfy model

for flnetunlng

loaders

TSR

[

7) Implement

evaluation utllltle;J

=Y

Stage 3:

Model finetuning

and usage

— | 8) Finetune modeﬂ

}

[

9) Evaluate
finetuned model

}

[

10) Use model
on new data

In this section, we implement the utility function to

calculate the classification loss and accuracy of the model
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