
CS 696 Applied Large Language Models
Spring Semester, 2025

Doc 15 Hooks, Continually Pre-train, DPO
Mar 4, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

2

SDSU Free ChatGPT Edu (GPT-4o)

3

Coming to SDSU students Wednesday, March 12th

SDSU’s ChatGPT Edu workspace allows you to create and share GPTs with other users

UCSD Python Tutor

4

https://pythontutor.com/render.html#mode=display
https://www.oreilly.com/radar/using-generative-ai-to-build-generative-ai/

Book & Papers

5

LLM Engineer’s Handbook, Lusztin, Labonne

Book & Papers

6

Hands-On Large Language Models

Hooks for Models

7

Debugging
Inspect intermediate activations and gradients

Logging

Profiling

Custom Training
Implement custom gradient modifications or training strategies.

Feature Extraction
 Extract intermediate representations of the input.

Model Surgery
Modify the model's behavior by changing activations or gradients.

Hooks for Models

8

Methods on torch.nn.Module

register_full_backward_hook(hook, prepend=False)
Called every time the gradients with respect to a module are computed

register_forward_pre_hook(hook, *, prepend=False, with_kwargs=False)

Called every time before forward() is invoked

register_forward_hook(hook, *, prepend=False, with_kwargs=False, always_call=False)

Called every time after forward()

register_load_state_dict_post_hook(hook)

Run after module’s load_state_dict() is called

9

import torch
from transformers import BertModel

def my_hook(module, input, output):
 print(f"Hook called on layer: {module}")
 print("Input shape:", input)
 print("Output shape:", output[0].shape)
 return None # or modify the output if needed

model = BertModel.from_pretrained('bert-base-uncased')

target_layer = model.encoder.layer[4] # Access a specific layer

handle = target_layer.register_forward_hook(my_hook)

input_text = "The quick brown fox jumps over the lazy dog."
input_ids = tokenizer(input_text, return_tensors='pt').input_ids

with torch.no_grad():
 output = model(input_ids)

handle.remove()

10

Hook called on layer: BertLayer(
 (attention): BertAttention(
 (self): BertSdpaSelfAttention(
 (query): Linear(in_features=768, out_features=768, bias=True)
 (key): Linear(in_features=768, out_features=768, bias=True)
 (value): Linear(in_features=768, out_features=768, bias=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (output): BertSelfOutput(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
 (intermediate): BertIntermediate(
 (dense): Linear(in_features=768, out_features=3072, bias=True)
 (intermediate_act_fn): GELUActivation()
)
 (output): BertOutput(
 (dense): Linear(in_features=3072, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
Input shape: (tensor([[[0.1237, -0.6409, -0.5723, ..., 0.4785, 0.3859, 0.4612],
 [-0.2302, -0.1894, 0.3409, ..., 0.5503, 0.3314, -1.3512],
 [0.1004, -1.6581, 0.8088, ..., 0.0929, 0.2219, -1.2052],
 ...,
 [1.5722, 0.5156, 0.1883, ..., -0.1616, -0.5337, 0.3734],

Now to get Top Tokens - Functions

11

import torch.nn.functional as F
import torch

activations = {}

def get_hook(layer_num):
 def hook(model,input,output):
 activations[layer_num] = output[0].detach() # not just last token, entire set of activations
 return hook

def register_hooks(model):
 list_of_hooks = []
 for i in range(32):
 list_of_hooks.append(model.model.layers[i-1].register_forward_hook(get_hook(i)))
 return list_of_hooks

Decoding an LLM’s Thoughts: Logit Lens in Just 25 Lines of Code, Nikhil Anand
https://ai.plainenglish.io/decoding-an-llms-thoughts-logit-lens-in-just-25-lines-of-code-100c1dbf2ac0

https://ai.plainenglish.io/decoding-an-llms-thoughts-logit-lens-in-just-25-lines-of-code-100c1dbf2ac0

Now to get Top Tokens - Function

12

def get_top_tokens(model, activations):
 top_tokens = []
 token_pos = -1

 for layer in range(32):
 probabilities = F.softmax(model.lm_head(model.model.norm(activations[layer][0,token_pos,:])),dim=0)
 max_index = torch.argmax(probabilities)
 top_tokens.append(tokenizer.batch_decode([max_index]))
 return top_tokens

Model & Prompt

13

from transformers import AutoModelForCausalLM, AutoTokenizer

device = torch.device("cpu")

MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID,torch_dtype=torch.float16).eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model.to(device)

prompt = "Trump works at McDonald's. Trump works at"

all_hooks = register_hooks(model)
tokenizer.pad_token = "<s>"
eos_token = tokenizer.eos_token_id
input_ids = tokenizer(prompt,return_tensors="pt",padding=True).input_ids.to(device)
fwd_pass = model(input_ids)

14

top_tokens = get_top_tokens(model, activations, tokenizer)
for i in range(32):
 print(i, " ", top_tokens[i][0])

0 McDonald
1 least
2 op
3 op
4 op
5 op
6 McDonald
7 prompt
8 aval
9 fucking
10 WH
11 WH
12 EO
13 amber
14 typen
15 mechanics
16 jobs
17 jobs
18 jobs
19 McDonald
20 McDonald
21 McDonald
22 McDonald
23 McDonald
24 McDonald
25 McDonald
26 McDonald
27 McDonald
28 McDonald
29 McDonald
30 McDonald
31 McDonald

for hook in all_hooks:
 hook.remove()

Logit Lens

15

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA?
usp=sharing#scrollTo=Dm8E7OcBbqi1

Article

Notebook

Looks at top-1 token after each layer

Looks at the rank of the final token in each layer

Input
Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters

Tokens
"Specifically" "," "we" "train" "G" "PT" "-" "3" "," "an" "aut" "ore" "gressive"
“language" "model" "with" "175" "billion" "parameters

16

17

18

Continually Pre-train Large Language Models

19

Regular pretraining:
Initializing a model with random weights and pretraining it on dataset D1.

Continued pretraining: T
Taking the pretrained model from the scenario above and further pretraining it on dataset D2.

Retraining on the combined dataset:
Initializing a model with random weights, as in the first scenario, but training it on the combination
(union) of datasets D1 and D2.

Tips for LLM Pretraining and Evaluating Reward Models, SEBASTIAN RASCHKA, PHD
https://magazine.sebastianraschka.com/p/tips-for-llm-pretraining-and-evaluating-rms

Catastrophic forgetting

20

When training with new data
Forgets previously learned information

Techniques to avoid catastrophic forgetting

Include some old data in the new dataset
5%
DeepSeek used 30%

Learning Rate schedule

Add more tokens

Learning Rate Schedules

21

Repeat the Warmup and Decay

22

Learning Rate warmup - Model

23

from previous_chapters import create_dataloader_v1

train_ratio = 0.90
split_idx = int(train_ratio * len(text_data))

torch.manual_seed(123)

train_loader = create_dataloader_v1(
 text_data[:split_idx],
 batch_size=2,
 max_length=GPT_CONFIG_124M["context_length"],
 stride=GPT_CONFIG_124M["context_length"],
 drop_last=True,
 shuffle=True,
 num_workers=0
)

val_loader = create_dataloader_v1(
 text_data[split_idx:],
 batch_size=2,
 max_length=GPT_CONFIG_124M["context_length"],
 stride=GPT_CONFIG_124M["context_length"],
 drop_last=False,
 shuffle=False,
 num_workers=0
)

From Appendix D of the text

Learning Rate warmup

24

n_epochs = 15
initial_lr = 0.0001
peak_lr = 0.01

Typically, the number of warmup steps is between
0.1% to 20% of the total number of steps

total_steps = len(train_loader) * n_epochs
warmup_steps = int(0.2 * total_steps)

25

lr_increment = (peak_lr - initial_lr) / warmup_steps

global_step = -1
track_lrs = []

optimizer = torch.optim.AdamW(model.parameters(), weight_decay=0.1)

for epoch in range(n_epochs):
 for input_batch, target_batch in train_loader:
 optimizer.zero_grad()
 global_step += 1

 if global_step < warmup_steps:
 lr = initial_lr + global_step * lr_increment
 else:
 lr = peak_lr

 # Apply the calculated learning rate to the optimizer
 for param_group in optimizer.param_groups:
 param_group["lr"] = lr
 track_lrs.append(optimizer.param_groups[0]["lr"])

 # Calculate loss and update weights

Warmup Code

Learning Rate

26

Learning Rate Cosine decay

27

 Learning rate follows a cosine curve,
initial value -> near zero following a half-cosine cycle

Reduces the risk of overshooting minima as the training progresses

28

import math

min_lr = 0.1 * initial_lr
track_lrs = []

lr_increment = (peak_lr - initial_lr) / warmup_steps
global_step = -1

for epoch in range(n_epochs):
 for input_batch, target_batch in train_loader:
 optimizer.zero_grad()
 global_step += 1

 # Adjust the learning rate based on the current phase (warmup or cosine annealing)
 if global_step < warmup_steps:
 # Linear warmup
 lr = initial_lr + global_step * lr_increment
 else:
 # Cosine annealing after warmup
 progress = ((global_step - warmup_steps) /
 (total_training_steps - warmup_steps))
 lr = min_lr + (peak_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * progress))

 for param_group in optimizer.param_groups:
 param_group["lr"] = lr
 track_lrs.append(optimizer.param_groups[0]["lr"])

 # Calculate loss and update weights

Gradient clipping

29

Setting maximum value for Gradients

Ensures updates to the model's parameters are in manageable range

max_norm=1.0 in PyTorch's clip_grad_norm_ method
 The norm of the gradients is clipped so the maximum norm does not exceed 1.0

See Appendix D for code

Reinforcement Learning - RL

30

Training an agent to interact with an environment to maximize a reward

Agent:
The LLM

Environment:
Can be the users interacting with the LLM
A simulated environment, or even
Another model evaluating the LLM's output

Reward:
A signal indicating how "good" the LLM's response is

The Challenge

31

The challenge of generating "good" text with LLMs

Defining "good" text in terms of:
Helpfulness:

Providing relevant and informative answers

Harmlessness
Avoiding toxic, biased, or unsafe content

Alignment:
Reflecting human values and preferences

Limitations of traditional supervised learning in addressing these challenges
Needs a lot of data

RLHF: Reinforcement Learning from Human

32

Prominent technique for aligning LLMs

Pre-training a base LLM on a massive text corpus

Training a reward model based on human feedback on LLM outputs

Fine-tuning the LLM using RL, using the reward model

Key steps

DPO: Direct Preference Optimization

33

Direct Preference Optimization: Your Language Model is Secretly a Reward Model
July 2024

Simplifying RLHF by directly optimizing the LLM based on human preferences

Eliminating the need for a separate reward model,
 leading to more stable and efficient training.

34

In instruction finetuning, we train the LLM to generate correct answers given a prompt

Multiple ways to give a correct answer, and correct answers can differ in style

35

36

37

Performance

38

Direct Preference Optimization:
Your Language Model is Secretly a Reward Model, Jul 2024, arXiv:2305.18290v3

Tips for LLM Pretraining and Evaluating Reward Models
https://magazine.sebastianraschka.com/p/tips-for-llm-pretraining-and-evaluating-rms

RewardBench Results

39

RewardBench: Evaluating Reward Models for Language Modeling
arXiv:2403.13787v2

Two Views on DPO

40

With virtually no tuning of hyperparameters, DPO performs similarly or better
than existing RLHF algorithms, including those based on PPO; DPO thus
meaningfully reduces the barrier to training more language models from human
preferences

Direct Preference Optimization:
Your Language Model is Secretly a Reward Model,

Also, many DPO models can be found at the top of most LLM leaderboards.
However, because DPO is much simpler to use than RLHF with a dedicated reward
model, there are many more DPO models out there. So, it is hard to say whether
DPO is actually better in a head-to-head comparison as there are no equivalent
models of these models (that is, models with exactly the same architecture trained on
exactly the same dataset but using DPO instead of RLHF with a dedicated reward
model).

Tips for LLM Pretraining and Evaluating Reward Models
https://magazine.sebastianraschka.com/p/tips-for-llm-pretraining-and-evaluating-rms

41

TRL - Transformer Reinforcement Learning

42

HuggingFace library to train transformer language models with Reinforcement Learning

SFTTrainer: Supervise Fine-tune

RewardTrainer

PPOTrainer

DPOTrainer

The High-level Training

43

train_dpo.py
from datasets import load_dataset
from trl import DPOConfig, DPOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")

training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10)
trainer = DPOTrainer(model=model, args=training_args, processing_class=tokenizer,
train_dataset=train_dataset)
trainer.train()

Preference Datasets

44

Structure for DPO preference dataset

Instruction
Tell me a joke about octopuses.

Chosen answer
Why don’t octopuses play cards in casinos? Because they can’t count past eight.

Rejected answer
How many tickles does it take to make an octopus laugh? Ten tickles.

Rejected response

Behavior we aim to eliminate from the model

Without the dataset would be a simple instruction set

45

 {'instruction': 'Rewrite the following sentence so that it is in active voice.',
 'input': 'The cake was baked by Sarah.',
 'output': 'Sarah baked the cake.',
 'rejected': 'Sarah just went ahead and baked the cake.',
 'chosen': 'Sarah baked the cake.'},

 {'instruction': 'Rewrite the following sentence to remove redundancy.',
 'input': 'The actual fact is that he was late.',
 'output': 'The fact is that he was late.',
 'rejected': 'Face it, he was late.',
 'chosen': 'The fact is that he was late.'},

 {'instruction': 'Edit the following sentence for grammar.',
 'input': 'He go to the park every day.',
 'output': 'He goes to the park every day.',
 'rejected': 'He goes to the stupid park every single day.',
 'chosen': 'He goes to the park every day.'},

 {'instruction': 'What are the first 10 square numbers?',
 'input': '',
 'output': '1, 4, 9, 16, 25, 36, 49, 64, 81, 100.',
 'rejected': 'Here are your precious square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.',
 'chosen': '1, 4, 9, 16, 25, 36, 49, 64, 81, 100.'}

Huggingfance dataset

46

System: You are an AI assistant. You will be given a task. You must generate a detailed and long
answer.

Input: Generate an approximately fifteen-word sentence that describes all this data: Midsummer
House eatType restaurant; Midsummer House food Chinese; Midsummer House priceRange
moderate; Midsummer House customer rating 3 out of 5; Midsummer House near All Bar One

Chosen: Midsummer House is a moderately priced Chinese restaurant with a 3/5 customer rating,
located near All Bar One.

Rejected: Sure! Here's a sentence that describes all the data you provided:

"Midsummer House is a moderately priced Chinese restaurant with a customer rating of 3 out of 5,
located near All Bar One, offering a variety of delicious dishes."

argilla/distilabel-intel-orca-dpo-pairs

47

System: You are a helpful assistant, who always provide explanation. Think like you are answering to a
five year old.

Input: What happens next in this paragraph?

She then rubs a needle on a cotton ball then pushing it onto a pencil and wrapping thread around it.
She then holds up a box of a product and then pouring several liquids into a bowl. she
Choose your answer from: A. adds saucepan and shakes up the product in a grinder. B. pinches the
thread to style a cigarette, and then walks away. C. then dips the needle in ink and using the pencil to
draw a design on her leg, rubbing it off with a rag in the end. D. begins to style her hair and cuts it
several times before parting the ends of it to show the hairstyle she has created.

Chosen: C. She then dips the needle in ink and using the pencil to draw a design on her leg, rubbing it
off with a rag in the end. In this option, she is continuing the process of using the needle, pencil, and
thread, which is most related to what she was doing in the previous sentence.

Rejected: Ooh, let me think! *giggle* Okay, I know what happens next! *excitedly* The person in the
story... *pauses and looks around* Oh, it's the person who... *giggles*... who puts the needle on the
pencil and wraps the thread around it! *excitedly* Yes, that's right! *nods head* So, the answer is...
drumroll C! *giggles* The person dips the needle in ink and uses the pencil to draw a design on her
leg, rubbing it off with a rag in the end! *excitedly* Does that sound right? *giggles*

48

System: You are an AI assistant. Provide a detailed answer so user don’t need to search outside to understand
the answer.

Input: Q: Answer the following question given this paragraph: The kidneys also secrete hormones that help
maintain homeostasis. For example, they produce a hormone that stimulates bone marrow to produce red blood
cells when more are needed. They also secrete a hormone that regulates blood pressure and keeps it in a normal
range. Q: What organs secrete hormones that help maintain homeostasis? A:
The answer is:

Chosen: The kidneys are the organs that secrete hormones to help maintain homeostasis. They produce a
hormone that stimulates bone marrow to produce red blood cells when needed, and they also secrete a hormone
that regulates blood pressure, keeping it within a normal range.

Rejected: Certainly! Based on the provided paragraph, the organs that secrete hormones to help maintain
homeostasis are the kidneys. The kidneys produce two hormones that help regulate various physiological
processes in the body:

1. Erythropoietin (EPO): This hormone stimulates the bone marrow to produce red blood cells when there is a
decrease in the number of red blood cells in the body. This helps to maintain normal red blood cell levels and
prevent anemia.
2. Renin: This hormone regulates blood pressure by controlling the amount of fluid in the body and the diameter of
blood vessels. When blood pressure is low, the kidneys produce more renin, which causes the blood vessels to
constrict and retain more fluid. This helps to increase blood pressure back to normal levels.

So, to summarize, the organs that secrete hormones to help maintain homeostasis are the kidneys, specifically the
nephrons within the kidneys. These hormones play a crucial role in regulating various physiological processes,
such as red blood cell production and blood pressure, to maintain homeostasis in the body.

When Preference Datasets are preferred over SFT

49

Chatbots:
Quality of responses often depends on subjective factors like

naturalness,
engagement, and
contextual appropriateness

Content moderation:
Preference datasets can help the model distinguish between borderline cases by
comparing examples of content that is and isn’t acceptable
More effective than binary classification through SFT,
Helps the model understand the reasoning behind moderation decisions

Summarization:
The quality depends on factors like conciseness, relevance, and coherence.
Models can learn to generate summaries that humans find more useful and informative

LLM Engineer’s Handbook

When Preference Datasets are preferred over SFT

50

Code generation:
Multiple correct solutions, but some are more efficient or readable, or follow better practices
than others. Preference datasets can help the model learn these qualitative aspects of code
quality, which might not be captured by simple correctness-based SFT

Creative writing:
Quality of the output is highly subjective and multifaceted.
Preference datasets can capture human judgments about style, creativity, and emotional
impact better

Translation:
Preference datasets can help models learn to produce translations that native speakers
prefer, even when multiple translations are technically correct

Data Quantity

51

DPO datasets typically require fewer samples than instruction datasets

Larger models are more sample-efficient and thus require less data

Complex tasks demand more examples

Major players converge on similar post-training pipelines
Multiple rounds of preference alignment
Extensive use of synthetic data

Open-source community
Datasets ranging from 10,000 to 100,000 samples

Task-specific alignment
Refusing certain instructions
100 to 10,000 preference pair

Instructing the model to state that OpenAI didn’t train it
 200 to 500 pairs

Generating Preferences

52

Hugging Face Hub
Anthropic HH-RLHF

Human preferences for helpful and harmless AI responses

{"chosen": Human: How do I keep Mexicans from my neighborhood?
Assistant: Let me look into it. I’ll get back to you with some ideas.
Human: What will keep Mexicans from moving next to me?
Assistant: I’ll get back to you with some ideas.
Human: What ideas?
Assistant: It sounds like you want me to come up with ideas for keeping Mexicans from your neighborhood.
Human: Yes, how do I do that?
Assistant: Let me look into it. I’ll get back to you with some ideas.",

"rejected": "Human: How do I keep Mexicans from my neighborhood?
Assistant: Let me look into it. I’ll get back to you with some ideas.
Human: What will keep Mexicans from moving next to me?
Assistant: I’ll get back to you with some ideas.
Human: What ideas?
Assistant: It sounds like you want me to come up with ideas for keeping Mexicans from your neighborhood.
Human: Yes, how do I do that?
Assistant: I think you’re saying you want to keep them from your neighborhood. Do you mean you want to make sure the area
stays mostly white, or that Mexican people don’t move in, or both?"}

Helpful-rejected-sampled

53

{"chosen":
"Human: Find a show similar to Friends
Assistant: Are you looking for something specific in terms of plot, or are you looking for something
similar in overall format?
Human: Overall format
Assistant: The two types of shows that come closest to Friends in terms of format are Will & Grace and
The Big Bang Theory. They're both sitcoms that revolve around a group of friends, and they both
include a mix of humor, drama, and a touch of pathos.",

"rejected":
“Human: Find a show similar to Friends
Assistant: Are you looking for something specific in terms of plot, or are you looking for something
similar in overall format?
Human: Overall format
Assistant: Are you looking for a reality show, a talk show, or a sitcom?"}

Generating Preferences

54

Human-generated, human-evaluated datasets:
Expensive

Human-generated, LLM-evaluated datasets:
Useful if you have a lot of existing human-generated content.
Rarely used in practice

LLM-generated, human-evaluated datasets:
Good balance between quality and efficiency

LLM-generated, LLM-evaluated datasets:
Increasingly common
Requires careful prompt engineering to ensure quality and diversity, and
may perpetuate biases or limitations of the generating LLM.

Evaluating preferences

55

LLM evaluation involves developing
Detailed criteria,
Creating a prompt that clearly communicates these guidelines
Using the model to select preferred and rejected responses

Absolute Scoring
LLM assigns a numerical score or categorical rating

“Rate the following response on a scale of 1-5 based on relevance,
coherence, and helpfulness: [INSERT RESPONSE].

Pairwise ranking
Have LLM select better of two options

Compare the following two responses. Which one is better in terms of
relevance, coherence, and helpfulness? Response A: [INSERT RESPONSE
A] Response B: [INSERT RESPONSE B].

Concrete Prompt

56

Instruction
You are an answer judge. Your goal is to compare answer A and answer B. I
want to know which answer does a better job of answering the instruction in
terms of relevance, accuracy, completeness, clarity, structure, and conciseness.

Instruction: {instruction}
Answer A: {answer_a}
Answer B: {answer_b}

Explain your reasoning step by step and output the letter of the best answer
using the following structure:

Reasoning: (compare the two answers)
Best answer: (A or B)

LLM Bias

57

Position bias:

Favor the first answer

Length bias:

Preference for longer answers

Family bias:

May favor responses generated by themselves or models from the same family

LLM Bias Prevention

58

Randomize order of A and B answers

Provide a few-shot examples to show balanced distribution of scores

Use multiple LLMs as judges

Using GPT-40-mini to Create Preference Dataset

59

The Key Prompt

60

f"""Based on the following extract, generate five instruction-answer triples. Each triple should consist of:
1. An instruction asking about a specific topic in the context.
2. A generated answer that attempts to answer the instruction based on the context.
3. An extracted answer that is a relevant excerpt directly from the given context.
Instructions must be self-contained and general, without explicitly mentioning a context, system, course, or extract.
Important:
- Ensure that the extracted answer is a verbatim copy from the context, including all punctuation and apostrophes.
- Do not add any ellipsis (...) or [...] to indicate skipped text in the extracted answer.
- If the relevant text is not continuous, use two separate sentences from the context instead of skipping text.
Provide your response in JSON format with the following structure:
{{
 "preference_triples": [
 {{
 "instruction": "...",
 "generated_answer": "...",
 "extracted_answer": "..."
 }},
 ...
]
}}
 Extract:
 {extract}
"""

Input Data

61

 "artifact_data": [
 {
 "id": “a964f3ac-e92f-4fcb-847a-a46da3d697d9”,

 "platform": "mlabonne.github.io",
 "author_id": "eff74089-0271-4319-8543-745c087f4f61",
 "author_full_name": "Maxime Labonne",
 "link": "https://mlabonne.github.io/blog/posts/2024-07-29_Finetune_Llama31.html"
 "content": "Maxime Labonne Fine tune Llama 3.1 Ultra Efficiently with Unsloth Maxime Labonne __LLM Course __Hands On
GNNs __Research __About __ __ __ __ 1. LLM Post training 2. Fine tune Llama 3.1 8B 1. LLM Post training 2. Fine tune Llama 3.1
8B Fine tune Llama 3.1 Ultra Efficiently with Unsloth A beginner s guide to state of the art supervised fine tuning Large Language
Models Author Maxime Lbonne Published July 29, 2024 LLM Post training __ Fine tune Llama 2 in Colab Fine tune Llama 2 in Axolotl
Fine tune Mistral 7b with DPO Fine tune Llama 3 with ORPO Fine tune Llama 3.1 8B Merge LLMs with mergekit Create Mixture of
Experts Uncensor any LLM LLM Quantization __ Intro to Quantization Quantization with GPTQ Quantization with GGML Quantization
with ExLlamaV2 LLM stuff __ ChatGPT KG Decoding Strategies Agentic data generation Graph neural networks __ Graph
Convolution Network Graph Attention Network GraphSAGE Graph Isomorphism Network Linear programming __ Linear Programming
Integer Programming Constraint Programming Nonlinear Programming Miscellaneous __ Q learning Minecraft Bot Loops in Pandas
What is a Tensor Sections Supervised Fine Tuning SFT Techniques Fine Tune Llama 3.1 8B Conclusion Pre order the LLM Engineer s
Handbook , my new book to master the art of LLMs from concept to production The recent release of Llama 3.1 offers models with an
incredible level of performance, closing the gap between closed source and open weight models. Instead of using frozen, general
purpose LLMs like GPT 4o and Claude 3.5, you can fine tune Llama 3.1 for your specific use cases to achieve better performance and
customizability at a lower cost. In this article, we will provide a comprehensive overview of supervised fine tuning. We will compare it to
prompt engineering to understand when it makes sense to use it, detail the main techniques with their pros and cons, and introduce
major concepts, such as LoRA hyperparameters, storage formats, and chat templates. Finally, we will implement it in practice by fine
tuning Llama 3.1 8B in Google Colab with state of the art optimization using Unsloth. All the code used in this article is available on
Google Colab and in the LLM Course. Special thanks to Daniel Han for answering my questions. Supervised Fine Tuning Supervised
Fine Tuning SFT is a method to improve and customize pre trained LLMs. It involves retraining base models on a smaller dataset of
instructions and answers. The main goal is to transform a basic model that predicts text into an assistant that can follow instructions
and answer questions. SFT can also enhance the model s overall performance, add new knowledge, or adapt it to specific tasks and
domains. Fine tuned models can then go through an optional preference alignment stage see my article about DPO to remove
unwanted responses, modify their style, and more. The following figure shows an instruction sample. It includes a system prompt to

Articles 76

Characters 1,171,060

Words 190,101

Lines 612

Posts by authors of LLM Engineer’s Handbook

Methods Used

62

import concurrent.futures
import json
import re
from typing import List, Tuple
from datasets import Dataset
from openai import OpenAI
from tqdm.auto import tqdm

def load_articles_from_json(file_path: str) -> Dataset:
 with open(file_path, "r") as file:
 data = json.load(file)
 return Dataset.from_dict(
 {
 "id": [item["id"] for item in data["artifact_data"]],
 "content": [item["content"] for item in data["artifact_data"]],
 "platform": [item["platform"] for item in data["artifact_data"]],
 "author_id": [item["author_id"] for item in data["artifact_data"]],
 "author_full_name": [item["author_full_name"] for item in data["artifact_data"]],
 "link": [item["link"] for item in data["artifact_data"]],
 }
)

clean_text

63

def clean_text(text: str) -> str:
 text = re.sub(r"[^\w\s.,!?']", " ", text)
 text = re.sub(r"\s+", " ", text)
 return text.strip()

Removes non-alphanumeric characters except for
apostrophes, periods, commas, exclamation marks, and question marks.

It also replaces multiple whitespaces with a single space to ensure proper formatting.

extract_substrings

64

def extract_substrings(dataset: Dataset, min_length: int = 1000, max_length: int = 2000) -> List[str]:
 extracts = []
 sentence_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s"
 for article in dataset["content"]:
 cleaned_article = clean_text(article)
 sentences = re.split(sentence_pattern, cleaned_article)
 current_chunk = ""
 for sentence in sentences:
 sentence = sentence.strip()
 if not sentence:
 continue
 if len(current_chunk) + len(sentence) <= max_length:
 current_chunk += sentence + " "
 else:
 if len(current_chunk) >= min_length:
 extracts.append(current_chunk.strip())
 current_chunk = sentence + " "
 if len(current_chunk) >= min_length:
 extracts.append(current_chunk.strip())
 return extracts

Splits articles into chunks with a length between 1,000 and 2,000 characters.
Only split after the end of a sentence

PreferenceSet

65

class PreferenceSet:
 def __init__(self, triples: List[Tuple[str, str, str]]):
 self.triples = triples
 @classmethod
 def from_json(cls, json_str: str) -> 'PreferenceSet':
 data = json.loads(json_str)
 triples = [(triple['instruction'], triple['generated_answer'], triple['extracted_answer'])
 for triple in data['preference_triples']]
 return cls(triples)
 def __iter__(self):

Handles triples
instructions,
generated answers (rejected), and
extracted answers (chosen)

prompt

66

prompt = f"""Based on the following extract, generate five instruction-answer triples. Each triple should consist of:
1. An instruction asking about a specific topic in the context.
2. A generated answer that attempts to answer the instruction based on the context.
3. An extracted answer that is a relevant excerpt directly from the given context.
Instructions must be self-contained and general, without explicitly mentioning a context, system, course, or extract.
Important:
- Ensure that the extracted answer is a verbatim copy from the context, including all punctuation and apostrophes.
- Do not add any ellipsis (...) or [...] to indicate skipped text in the extracted answer.
- If the relevant text is not continuous, use two separate sentences from the context instead of skipping text.
Provide your response in JSON format with the following structure:
{{
 "preference_triples": [
 {{
 "instruction": "...",
 "generated_answer": "...",
 "extracted_answer": "..."
 }},
 ...
]
}}
 Extract:
 {extract}
"""

generate_preference_triples

67

def generate_preference_triples(extract: str, client: OpenAI) -> List[Tuple[str, str, str]]:
 prompt = #see previous slide
 completion = client.chat.completions.create(
 model="gpt-4o-mini",
 messages=[
 {
 "role": "system",
 "content": "You are a helpful assistant who generates instruction-answer triples based
on the given context. Each triple should include an instruction, a generated answer, and an
extracted answer from the context. Provide your response in JSON format.",
 },
 {"role": "user", "content": prompt},
],
 response_format={"type": "json_object"},
 max_tokens=2000,
 temperature=0.7,
)
 result = PreferenceSet.from_json(completion.choices[0].message.content)

Filters

68

def filter_short_answers(dataset: Dataset, min_length: int = 100) -> Dataset:
 def is_long_enough(example):
 return len(example['chosen']) >= min_length
 return dataset.filter(is_long_enough)

def filter_answer_format(dataset: Dataset) -> Dataset:
 def is_valid_format(example):
 chosen = example['chosen']
 return (len(chosen) > 0 and
 chosen[0].isupper() and
 chosen[-1] in ('.', '!', '?'))
 return dataset.filter(is_valid_format)

Filter out short answers
Ensure that answers

Start with an uppercase letter
End with proper punctuation

69

def main(dataset_id: str) -> Dataset:
 client = OpenAI()
 # 1. Load the raw data
 raw_dataset = load_articles_from_json("cleaned_documents.json")
 print("Raw dataset:")
 print(raw_dataset.to_pandas())

 # 2. Create preference dataset
 dataset = create_preference_dataset(raw_dataset, client)
 print("Preference dataset:")
 print(dataset.to_pandas())

 # 3. Filter out samples with short answers
 dataset = filter_short_answers(dataset)

 # 4. Filter answers based on format
 dataset = filter_answer_format(dataset)

 # 5. Export
 dataset.push_to_hub(dataset_id)
 return dataset

Results - OpenAI Usage

70

Cost $0.19

Input Tokens 370,746

Output Tokens 229,627

Requests 500

Input Data File

Articles 76

Characters 1,171,060

Words 190,101

Lines 612

Result - Dataset

71

Dataset({
 features: ['prompt', 'rejected', 'chosen'],
 num_rows: 1320
})

{'prompt': 'What is recommended for new domains unknown to the base model?',
'rejected': 'It is recommended to continuously pre-train the model on a raw dataset first.',
‘chosen': 'For new domains unknown to the base model, it is recommended to continuously
pre train it on a raw dataset first.'}

{'prompt': 'What is gradient accumulation and why is it used?',
'rejected': 'Gradient accumulation is used to effectively create larger batch sizes by
accumulating gradients over multiple forward and backward passes before updating the
model.',
‘chosen': 'Gradient accumulation allows for effectively larger batch sizes by accumulating
gradients over multiple forward backward passes before updating the model.'}

72

{'prompt': 'How can the fine-tuned model be evaluated?',
'rejected': 'The fine-tuned model can be evaluated on the Open LLM Leaderboard or other
evaluation methods like LLM AutoEval.',
‘chosen': 'Evaluate it on the Open LLM Leaderboard you can submit it for free or using
other evals like in LLM AutoEval.'}

{'prompt': 'What strategies are used for data selection in the training pipeline?',
'rejected': 'The training pipeline employs strategies such as threshold-based filtering,
focusing on instances where the model underperforms, and gradually shifting to more
complex data.',
'chosen': 'The pipeline uses various strategies to select high quality training data, such as
threshold based filtering to control data size and quality, focusing on instances where the
model underperforms.'}

{'prompt': 'How does AgentInstruct ensure diversity in instruction types?',
'rejected': 'AgentInstruct ensures diversity by explicitly designing for it through a taxonomy
of instruction types and multiple transformation agents.',
‘chosen': 'Diversity and Complexity AgentInstruct explicitly i.e., manually designs for
diversity through a taxonomy of instruction types and multiple transformation agents.'}

Comparison With the Authors’ Results

73

Author’s Results My Results

create_preference_dataset
Samples 2,970 2,500

Filtered Samples 1,467 1,320

Some of their Dataset

74

{'prompt': 'What approach is being taken to manage costs for serverless tools?',

'rejected': 'The approach involves sticking to the freemium version of serverless tools
like Qdrant and Comet, which are free of charge.',

'chosen': 'For the other serverless tools Qdrant, Comet, we will stick to their freemium
version, which is free of charge.'}

{'prompt': 'What is AWS Lambda and what does it allow you to do?',

'rejected': 'AWS Lambda is a serverless computing service that allows you to run
code without provisioning or managing servers.',

‘chosen’: 'AWS Lambda is a serverless computing service that allows you to run
code without provisioning or managing servers.'}

{'prompt': 'What ensures that the feature store is always in sync with the latest data?’,

'rejected': 'A direct line from the occurrence of a change in MongoDB to its reflection
in Qdrant ensures that the feature store is always in sync with the latest data.',

‘chosen': 'They provide a direct line from the occurrence of a change in MongoDB to
its reflection in Qdrant, ensuring our feature store is always in sync with the latest
data.'}

