
CS 696 Applied Large Language Models 
Spring Semester, 2025 

Doc 16 DPO, DeepSeekMath, GRPO 
Mar 6, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/
openpub/) license defines the copyright on this 
document.



References

2

DeepSeekMath: Pushing the Limits of Mathematical 
Reasoning in Open Language Models 
27 Apr 2024

https://www.philschmid.de/mini-deepseek-r1

https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/
main/training/mini-deepseek-r1-aha-grpo.ipynb



Book Code to Train Model
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def train_model_simple(model, train_loader, val_loader, 
                       optimizer, device, num_epochs, 
                       eval_freq, eval_iter, start_context, tokenizer): 
    train_losses, val_losses, track_tokens_seen = [], [], []   
    tokens_seen, global_step = 0, -1 

    for epoch in range(num_epochs):   
        model.train() 
        for input_batch, target_batch in train_loader: 
            optimizer.zero_grad()   
            loss = calc_loss_batch( 
                input_batch, target_batch, model, device 
            ) 
            loss.backward()                     
            optimizer.step()                    
            tokens_seen += input_batch.numel() 
            global_step += 1 

           if global_step % eval_freq == 0:     
                train_loss, val_loss = evaluate_model( 
                    model, train_loader, val_loader, device, eval_iter) 
                train_losses.append(train_loss) 
                val_losses.append(val_loss) 
                track_tokens_seen.append(tokens_seen) 
                print(f"Ep {epoch+1} (Step {global_step:06d}): " 
                      f"Train loss {train_loss:.3f}, " 
                      f"Val loss {val_loss:.3f}" 
                ) 

        generate_and_print_sample(                       
            model, tokenizer, device, start_context 
        ) 
    return train_losses, val_losses, track_tokens_seen



Using Huggingface Transformers, PEFT, TRL
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from transformers import TrainingArguments, Trainer 

training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")

trainer = Trainer( 
    model=model, 
    args=training_args, 
    train_dataset=small_train_dataset, 
    eval_dataset=small_eval_dataset, 
    compute_metrics=compute_metrics, 
)

trainer.train()



Transformer Lab
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https://github.com/transformerlab/transformerlab-app



Recall
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Use RL to further train LLM

SFTTrainer 
RewardTrainer 
PPOTrainer 
DPOTrainer 
GRPOTrainer

Some RL trainers from Huggingface

Need Preference Datasets for DPO to indicate chosen and rejected answers



When Preference Datasets are preferred over SFT
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Chatbots:  
Quality of responses often depends on subjective factors like  

naturalness,  
engagement, and  
contextual appropriateness 

Content moderation:  
Preference datasets can help the model distinguish between borderline cases by 
comparing examples of content that is and isn’t acceptable 
More effective than binary classification through SFT,  
Helps the model understand the reasoning behind moderation decisions 

Summarization:  
The quality depends on factors like conciseness, relevance, and coherence.  
Models can learn to generate summaries that humans find more useful and informative

LLM Engineer’s Handbook



When Preference Datasets are preferred over SFT
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Code generation:  
Multiple correct solutions, but some are more efficient or readable, or follow better practices 
than others. Preference datasets can help the model learn these qualitative aspects of code 
quality, which might not be captured by simple correctness-based SFT 

Creative writing:  
Quality of the output is highly subjective and multifaceted.  
Preference datasets can capture human judgments about style, creativity, and emotional 
impact better 

Translation:  
Preference datasets can help models learn to produce translations that native speakers 
prefer, even when multiple translations are technically correct



Data Quantity
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DPO datasets typically require fewer samples than instruction datasets

Larger models are more sample-efficient and thus require less data

Complex tasks demand more examples

Major players converge on similar post-training pipelines  
Multiple rounds of preference alignment 
Extensive use of synthetic data

Open-source community  
Datasets ranging from 10,000 to 100,000 samples

Task-specific alignment 
Refusing certain instructions 
100 to 10,000 preference pair

Instructing the model to state that OpenAI didn’t train it 
 200 to 500 pairs



Generating Preferences
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Hugging Face Hub
Anthropic HH-RLHF 

Human preferences for helpful and harmless AI responses

{"chosen": Human: How do I keep Mexicans from my neighborhood? 
Assistant: Let me look into it. I’ll get back to you with some ideas. 
Human: What will keep Mexicans from moving next to me? 
Assistant: I’ll get back to you with some ideas. 
Human: What ideas? 
Assistant: It sounds like you want me to come up with ideas for keeping Mexicans from your neighborhood. 
Human: Yes, how do I do that? 
Assistant: Let me look into it. I’ll get back to you with some ideas.",  

"rejected": "Human: How do I keep Mexicans from my neighborhood? 
Assistant: Let me look into it. I’ll get back to you with some ideas. 
Human: What will keep Mexicans from moving next to me? 
Assistant: I’ll get back to you with some ideas. 
Human: What ideas? 
Assistant: It sounds like you want me to come up with ideas for keeping Mexicans from your neighborhood. 
Human: Yes, how do I do that? 
Assistant: I think you’re saying you want to keep them from your neighborhood. Do you mean you want to make sure the area 
stays mostly white, or that Mexican people don’t move in, or both?"} 



Helpful-rejected-sampled
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{"chosen":  
"Human: Find a show similar to Friends 
Assistant: Are you looking for something specific in terms of plot, or are you looking for something 
similar in overall format? 
Human: Overall format 
Assistant: The two types of shows that come closest to Friends in terms of format are Will & Grace and 
The Big Bang Theory.  They're both sitcoms that revolve around a group of friends, and they both 
include a mix of humor, drama, and a touch of pathos.",  

"rejected":  
“Human: Find a show similar to Friends 
Assistant: Are you looking for something specific in terms of plot, or are you looking for something 
similar in overall format? 
Human: Overall format 
Assistant: Are you looking for a reality show, a talk show, or a sitcom?"} 



Generating Preferences
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Human-generated, human-evaluated datasets:  
Expensive 

Human-generated, LLM-evaluated datasets:  
Useful if you have a lot of existing human-generated content.  
Rarely used in practice 

LLM-generated, human-evaluated datasets:  
Good balance between quality and efficiency 

LLM-generated, LLM-evaluated datasets:  
Increasingly common  
Requires careful prompt engineering to ensure quality and diversity, and 
may perpetuate biases or limitations of the generating LLM.



Evaluating preferences
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LLM evaluation involves developing  
Detailed criteria,  
Creating a prompt that clearly communicates these guidelines 
Using the model to select preferred and rejected responses

Absolute Scoring 
LLM assigns a numerical score or categorical rating 

“Rate the following response on a scale of 1-5 based on relevance, 
coherence, and helpfulness: [INSERT RESPONSE].

Pairwise ranking 
Have LLM select better of two options 

Compare the following two responses. Which one is better in terms of 
relevance, coherence, and helpfulness? Response A: [INSERT RESPONSE 
A] Response B: [INSERT RESPONSE B].



Concrete Prompt
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Instruction 
You are an answer judge. Your goal is to compare answer A and answer B. I 
want to know which answer does a better job of answering the instruction in 
terms of relevance, accuracy, completeness, clarity, structure, and conciseness. 

Instruction: {instruction} 
Answer A: {answer_a} 
Answer B: {answer_b} 

Explain your reasoning step by step and output the letter of the best answer 
using the following structure: 

Reasoning: (compare the two answers) 
Best answer: (A or B)



LLM Bias
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Position bias:  

Favor the first answer 

Length bias:  

Preference for longer answers 

Family bias:  

May favor responses generated by themselves or models from the same family 



LLM Bias Prevention
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Randomize order of A and B answers

Provide a few-shot examples to show balanced distribution of scores

Use multiple LLMs as judges



Using GPT-40-mini to Create Preference Dataset

17



The Key Prompt
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f"""Based on the following extract, generate five instruction-answer triples. Each triple should consist of: 
1. An instruction asking about a specific topic in the context. 
2. A generated answer that attempts to answer the instruction based on the context. 
3. An extracted answer that is a relevant excerpt directly from the given context. 
Instructions must be self-contained and general, without explicitly mentioning a context, system, course, or extract. 
Important: 
- Ensure that the extracted answer is a verbatim copy from the context, including all punctuation and apostrophes. 
- Do not add any ellipsis (...) or [...]  to indicate skipped text in the extracted answer. 
- If the relevant text is not continuous, use two separate sentences from the context instead of skipping text. 
Provide your response in JSON format with the following structure: 
{{ 
    "preference_triples": [ 
        {{ 
            "instruction": "...", 
            "generated_answer": "...", 
            "extracted_answer": "..." 
        }}, 
        ... 
    ] 
}} 
    Extract: 
    {extract} 
""" 



Input Data
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   "artifact_data": [ 
        { 
            "id": “a964f3ac-e92f-4fcb-847a-a46da3d697d9”, 

       "platform": "mlabonne.github.io", 
            "author_id": "eff74089-0271-4319-8543-745c087f4f61", 
            "author_full_name": "Maxime Labonne", 
            "link": "https://mlabonne.github.io/blog/posts/2024-07-29_Finetune_Llama31.html" 
            "content": "Maxime Labonne Fine tune Llama 3.1 Ultra Efficiently with Unsloth Maxime Labonne __LLM Course __Hands On 
GNNs __Research __About __ __ __ __ 1. LLM Post training 2. Fine tune Llama 3.1 8B 1. LLM Post training 2. Fine tune Llama 3.1 
8B Fine tune Llama 3.1 Ultra Efficiently with Unsloth A beginner s guide to state of the art supervised fine tuning Large Language 
Models Author Maxime Lbonne Published July 29, 2024 LLM Post training __ Fine tune Llama 2 in Colab Fine tune Llama 2 in Axolotl 
Fine tune Mistral 7b with DPO Fine tune Llama 3 with ORPO Fine tune Llama 3.1 8B Merge LLMs with mergekit Create Mixture of 
Experts Uncensor any LLM LLM Quantization __ Intro to Quantization Quantization with GPTQ Quantization with GGML Quantization 
with ExLlamaV2 LLM stuff __ ChatGPT KG Decoding Strategies Agentic data generation Graph neural networks __ Graph 
Convolution Network Graph Attention Network GraphSAGE Graph Isomorphism Network Linear programming __ Linear Programming 
Integer Programming Constraint Programming Nonlinear Programming Miscellaneous __ Q learning Minecraft Bot Loops in Pandas 
What is a Tensor Sections Supervised Fine Tuning SFT Techniques Fine Tune Llama 3.1 8B Conclusion Pre order the LLM Engineer s 
Handbook , my new book to master the art of LLMs from concept to production The recent release of Llama 3.1 offers models with an 
incredible level of performance, closing the gap between closed source and open weight models. Instead of using frozen, general 
purpose LLMs like GPT 4o and Claude 3.5, you can fine tune Llama 3.1 for your specific use cases to achieve better performance and 
customizability at a lower cost. In this article, we will provide a comprehensive overview of supervised fine tuning. We will compare it to 
prompt engineering to understand when it makes sense to use it, detail the main techniques with their pros and cons, and introduce 
major concepts, such as LoRA hyperparameters, storage formats, and chat templates. Finally, we will implement it in practice by fine 
tuning Llama 3.1 8B in Google Colab with state of the art optimization using Unsloth. All the code used in this article is available on 
Google Colab and in the LLM Course. Special thanks to Daniel Han for answering my questions. Supervised Fine Tuning Supervised 
Fine Tuning SFT is a method to improve and customize pre trained LLMs. It involves retraining base models on a smaller dataset of 
instructions and answers. The main goal is to transform a basic model that predicts text into an assistant that can follow instructions 
and answer questions. SFT can also enhance the model s overall performance, add new knowledge, or adapt it to specific tasks and 
domains. Fine tuned models can then go through an optional preference alignment stage see my article about DPO to remove 
unwanted responses, modify their style, and more. The following figure shows an instruction sample. It includes a system prompt to 

Articles 76

Characters 1,171,060

Words 190,101

Lines 612

Posts by authors of LLM Engineer’s Handbook



Methods Used
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import concurrent.futures 
import json 
import re 
from typing import List, Tuple 
from datasets import Dataset 
from openai import OpenAI 
from tqdm.auto import tqdm

def load_articles_from_json(file_path: str) -> Dataset: 
    with open(file_path, "r") as file: 
        data = json.load(file) 
    return Dataset.from_dict( 
        { 
            "id": [item["id"] for item in data["artifact_data"]], 
            "content": [item["content"] for item in data["artifact_data"]], 
            "platform": [item["platform"] for item in data["artifact_data"]], 
            "author_id": [item["author_id"] for item in data["artifact_data"]], 
            "author_full_name": [item["author_full_name"] for item in data["artifact_data"]], 
            "link": [item["link"] for item in data["artifact_data"]], 
        } 
    )



clean_text
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def clean_text(text: str) -> str:     
    text = re.sub(r"[^\w\s.,!?']", " ", text)     
    text = re.sub(r"\s+", " ", text) 
    return text.strip()

Removes non-alphanumeric characters except for  
apostrophes, periods, commas, exclamation marks, and question marks.  

It also replaces multiple whitespaces with a single space to ensure proper formatting. 



extract_substrings
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def extract_substrings(dataset: Dataset, min_length: int = 1000, max_length: int = 2000) -> List[str]: 
    extracts = [] 
    sentence_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s" 
    for article in dataset["content"]: 
        cleaned_article = clean_text(article) 
        sentences = re.split(sentence_pattern, cleaned_article) 
        current_chunk = "" 
        for sentence in sentences: 
            sentence = sentence.strip() 
            if not sentence: 
                continue 
            if len(current_chunk) + len(sentence) <= max_length: 
                current_chunk += sentence + " " 
            else: 
                if len(current_chunk) >= min_length: 
                    extracts.append(current_chunk.strip()) 
                current_chunk = sentence + " " 
        if len(current_chunk) >= min_length: 
            extracts.append(current_chunk.strip()) 
    return extracts

Splits articles into chunks with a length between 1,000 and 2,000 characters.
Only split after the end of a sentence



PreferenceSet
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class PreferenceSet: 
    def __init__(self, triples: List[Tuple[str, str, str]]): 
        self.triples = triples 
    @classmethod 
    def from_json(cls, json_str: str) -> 'PreferenceSet': 
        data = json.loads(json_str) 
        triples = [(triple['instruction'], triple['generated_answer'], triple['extracted_answer']) 
                   for triple in data['preference_triples']] 
        return cls(triples) 
    def __iter__(self): 

Handles triples 
instructions,  
generated answers (rejected), and  
extracted answers (chosen)



prompt
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prompt = f"""Based on the following extract, generate five instruction-answer triples. Each triple should consist of: 
1. An instruction asking about a specific topic in the context. 
2. A generated answer that attempts to answer the instruction based on the context. 
3. An extracted answer that is a relevant excerpt directly from the given context. 
Instructions must be self-contained and general, without explicitly mentioning a context, system, course, or extract. 
Important: 
- Ensure that the extracted answer is a verbatim copy from the context, including all punctuation and apostrophes. 
- Do not add any ellipsis (...) or [...]  to indicate skipped text in the extracted answer. 
- If the relevant text is not continuous, use two separate sentences from the context instead of skipping text. 
Provide your response in JSON format with the following structure: 
{{ 
    "preference_triples": [ 
        {{ 
            "instruction": "...", 
            "generated_answer": "...", 
            "extracted_answer": "..." 
        }}, 
        ... 
    ] 
}} 
    Extract: 
    {extract} 
""" 



generate_preference_triples
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def generate_preference_triples(extract: str, client: OpenAI) -> List[Tuple[str, str, str]]: 
    prompt = #see previous slide 
    completion = client.chat.completions.create( 
        model="gpt-4o-mini", 
        messages=[ 
            { 
                "role": "system", 
                "content": "You are a helpful assistant who generates instruction-answer triples based 
on the given context. Each triple should include an instruction, a generated answer, and an 
extracted answer from the context. Provide your response in JSON format.", 
            }, 
            {"role": "user", "content": prompt}, 
        ], 
        response_format={"type": "json_object"}, 
        max_tokens=2000, 
        temperature=0.7, 
    ) 
    result = PreferenceSet.from_json(completion.choices[0].message.content) 



Filters
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def filter_short_answers(dataset: Dataset, min_length: int = 100) -> Dataset: 
    def is_long_enough(example): 
        return len(example['chosen']) >= min_length 
    return dataset.filter(is_long_enough) 

def filter_answer_format(dataset: Dataset) -> Dataset: 
    def is_valid_format(example): 
        chosen = example['chosen'] 
        return (len(chosen) > 0 and 
                chosen[0].isupper() and 
                chosen[-1] in ('.', '!', '?')) 
    return dataset.filter(is_valid_format) 

Filter out short answers 
Ensure that answers  

Start with an uppercase letter  
End with proper punctuation



Main
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def main(dataset_id: str) -> Dataset: 
    client = OpenAI() 
    # 1. Load the raw data 
    raw_dataset = load_articles_from_json("cleaned_documents.json") 
    print("Raw dataset:") 
    print(raw_dataset.to_pandas()) 

    # 2. Create preference dataset 
    dataset = create_preference_dataset(raw_dataset, client) 
    print("Preference dataset:") 
    print(dataset.to_pandas()) 

    # 3. Filter out samples with short answers 
    dataset = filter_short_answers(dataset) 

    # 4. Filter answers based on format 
    dataset = filter_answer_format(dataset) 

    # 5. Export 
    dataset.push_to_hub(dataset_id) 
    return dataset



Results - OpenAI Usage
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Cost $0.19

Input Tokens 370,746

Output Tokens 229,627

Requests 500

Input Data

Articles 76

Characters 1,171,060

Words 190,101

Lines 612



Result - Dataset
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Dataset({ 
    features: ['prompt', 'rejected', 'chosen'], 
    num_rows: 1320 
})

{'prompt': 'What is recommended for new domains unknown to the base model?',  
'rejected': 'It is recommended to continuously pre-train the model on a raw dataset first.',  
‘chosen': 'For new domains unknown to the base model, it is recommended to continuously 
pre train it on a raw dataset first.'} 

{'prompt': 'What is gradient accumulation and why is it used?',  
'rejected': 'Gradient accumulation is used to effectively create larger batch sizes by 
accumulating gradients over multiple forward and backward passes before updating the 
model.',  
‘chosen': 'Gradient accumulation allows for effectively larger batch sizes by accumulating 
gradients over multiple forward backward passes before updating the model.'}
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{'prompt': 'How can the fine-tuned model be evaluated?',  
'rejected': 'The fine-tuned model can be evaluated on the Open LLM Leaderboard or other 
evaluation methods like LLM AutoEval.',  
‘chosen': 'Evaluate it on the Open LLM Leaderboard you can submit it for free or using 
other evals like in LLM AutoEval.'} 

{'prompt': 'What strategies are used for data selection in the training pipeline?',  
'rejected': 'The training pipeline employs strategies such as threshold-based filtering, 
focusing on instances where the model underperforms, and gradually shifting to more 
complex data.',  
'chosen': 'The pipeline uses various strategies to select high quality training data, such as 
threshold based filtering to control data size and quality, focusing on instances where the 
model underperforms.'} 

{'prompt': 'How does AgentInstruct ensure diversity in instruction types?',  
'rejected': 'AgentInstruct ensures diversity by explicitly designing for it through a taxonomy 
of instruction types and multiple transformation agents.',  
‘chosen': 'Diversity and Complexity AgentInstruct explicitly i.e., manually designs for 
diversity through a taxonomy of instruction types and multiple transformation agents.'}



Comparison With the Authors’ Results
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Author’s Results My Results

create_preference_dataset 
Samples 2,970 2,500

Filtered Samples 1,467 1,320



Some of their Dataset
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{'prompt': 'What approach is being taken to manage costs for serverless tools?',  

'rejected': 'The approach involves sticking to the freemium version of serverless tools 
like Qdrant and Comet, which are free of charge.',  

'chosen': 'For the other serverless tools Qdrant, Comet, we will stick to their freemium 
version, which is free of charge.'}

{'prompt': 'What is AWS Lambda and what does it allow you to do?',  

'rejected': 'AWS Lambda is a serverless computing service that allows you to run 
code without provisioning or managing servers.',  

‘chosen’: 'AWS Lambda is a serverless computing service that allows you to run 
code without provisioning or managing servers.'}

{'prompt': 'What ensures that the feature store is always in sync with the latest data?’, 

'rejected': 'A direct line from the occurrence of a change in MongoDB to its reflection 
in Qdrant ensures that the feature store is always in sync with the latest data.',  

‘chosen': 'They provide a direct line from the occurrence of a change in MongoDB to 
its reflection in Qdrant, ensuring our feature store is always in sync with the latest 
data.'}



DeepSeekMath & The Big Improvement
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Math is deterministic  

LLMs produce what a good answer probably looks like

DeepSeekMath: Pushing the Limits of Mathematical 
Reasoning in Open Language Models 

27 Apr 2024



34



35

https://www.bracai.eu/post/llm-math-benchmark
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https://qwenlm.github.io/blog/qwq-32b-preview/



MATH LLM Benchmark
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12,500 problems sourced from high school math competitions 

A PhD student without a strong math background scored 40% 

A three-time IMO gold medalist scored 90% (IMO = International Mathematical Olympiad)

https://www.bracai.eu/post/llm-math-benchmark
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Cagney can frost a cupcake every 20 seconds and Lacey can frost a cupcake every 30 
seconds. Working together, how many cupcakes can they frost in 5 minutes? 

A)10. B) 15 C) 20 D) 25 E 30 
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DeepSeekMath - Math Pre-Training at Scale
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DeepSeekMath Corpus - 120B tokens

500,000 data points from the seed corpus as positive training examples 
500,000 web pages from Common Crawl as negative ones.

OpenWebMath initial seed corpus



Common Crawl
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2 billion web pages in each of its monthly crawls,  
generating around 250 terabytes of data each month

Stored on Amazon Web Services’ Public Data Sets

Access to the corpus hosted by Amazon is free.

https://commoncrawl.org/overview

DeepSeek reduced the Common Crawl to 40B webpages 
URL-based deduplication and near-deduplication techniques,



FastText Model
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Text classification model

To train the model, they used 
vector dimension to 256,  
learning rate to 0.1, 
maximum length, 
of word n-gram to 3,  
the minimum number of word occurrences to 3  
the number oftraining epochs to 3

Rank the collected pages according to fastText model  
Only preserve the top-ranking ones



Collecting the Corpus
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First iteration of data collection missed Math webpages

Enriched the seed corpus 

Calculate the percentage of Math pages in a domain 
If 10% of the pages are Math pages, manually annotate the URLs 
Web pages linked to these URLs, yet uncollected, will be added to the seed corpus

Retrain model and repeat

After 4 iterations 98% of data was collected in third iteration so stopped

35.5M mathematical web pages, totaling 120B tokens



Benchmark Contamination
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Need to remove answers to Math benchmarks questions from training data

GSM8K 
MATH (12,500 problems) 
Chinese benchmarks such as  
CMATH 
AGIEval

Filtering criteria  
Any text segment containing a 10-gram string that matches exactly with any sub-string 
from the evaluation benchmarks is removed from our math training corpus. 

For benchmark texts that are shorter than 10 grams but have at least 3 grams 
 employ exact matching to filter out contaminated web pages



Validating the Quality of the DeepSeekMath Corpus
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MathPile(8.9B tokens) 
Textbooks, Wikipedia, ProofWiki, CommonCrawl, StackExchange, and arXiv 

OpenWebMath  
CommonCrawl, 13.6B tokens 

Proof-Pile-2  
OpenWeb-Math, AlgebraicStack (10.3B tokens), and arXiv papers (28.0B tokens). 

Train DeepSeek-LLM 1.3B separately on each of the Corpusora



Validating the Quality of the DeepSeekMath Corpus
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Train DeepSeek-LLM 1.3B separately on each of the Corpusora

AdamW optimizer with  
𝛽1 = 0.9, 𝛽2 = 0.95, and weight_decay= 0.1 

Multi-step learning rate schedule  
Learning rate reaches the peak after 2,000 warmup steps,  
Decreases to its 31.6% after 80% of the training process,  
Further decreases to 10.0% of the peak after 90% of the training process. 

Maximum learning rate 5.3e-4,  

Batch size of 4M tokens 

4K context length



Validating the Quality of the DeepSeekMath Corpus
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DeepSeekMath-Base 7B
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Start with DeepSeek-Coder-Base-v1.5 7B 

Trained for 500B tokens 
56% from DeepSeekMath Corpus,  
4% from AlgebraicStack,  
10% from arXiv,  
20% is Github code,  
10% is natural language data from Common Crawl in both English and Chinese.

AdamW optimizer with  
𝛽1 = 0.9, 𝛽2 = 0.95, and weight_decay= 0.1 

Multi-step learning rate schedule  
Learning rate reaches the peak after 2,000 warmup steps,  
Decreases to its 31.6% after 80% of the training process,  
Further decreases to 10.0% of the peak after 90% of the training process. 

Maximum learning rate 4.3e-4,  

Batch size of 10M tokens 

4K context length



DeepSeekMath-Instruct 7B
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Start with DeepSeekMath-Base

Training examples are randomly concatenated to 4K tokens.  
500 steps  
Batch size of 256  
Constant learning rate of 5e-5

DeepSeek-Coder-Base-v1.5 7B -> DeepSeekMath-Base -> DeepSeekMath-Instruct 7B



Now Use Reinforcement Learning
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Group Relative Policy Optimization (GRPO)



GRPO Basics
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Sampling:  
Generate multiple outputs for each prompt using the current policy 

Reward Scoring:  
Each generation is scored using a reward function, could be rule-based or 
outcome-based 

Advantage Calculation:  
The average reward of the generated outputs is used as a baseline. The 
advantage of each solution within the group is then computed relative to this 
baseline. The reward is normalized within a group. 

Policy Optimization:  
The policy tries to maximize the GRPO objective, which includes the 
calculated advantages and a KL divergence term.



 KL (Kullback-Leibler) divergence
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Measure of how one probability distribution differs from another

 In PPO quantifies the difference between  
Current policy (the policy being updated) and  
Old policy

Policy Stability:  
PPO update policies gradually  
The KL divergence helps gauge this difference 

Trust Region Control:  
By measuring how far the new policy has moved from the old one, PPO can 
enforce a “trust region” that prevents overly large updates, ensuring stable 
training.



53



DeepSeekMath-RL
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DeepSeek-Coder-Base-v1.5 7B -> DeepSeekMath-Base  
                -> DeepSeekMath-Instruct 7B 
                -> DeepSeekMath-RL



GRPO and the Countdown Game

55

https://www.philschmid.de/mini-deepseek-r1

https://github.com/philschmid/deep-learning-pytorch-huggingface/blob/
main/training/mini-deepseek-r1-aha-grpo.ipynb

Countdown game  
Use set numbers and basic arithmetic operations (+, -, ×, ÷) to reach or get as 
close as possible to a target number.

Target Number: 952 
Available Numbers: 25, 50, 75, 100, 3, 6 

(100 × (3 × 3)) + (50 + 6 / 3) = 952 



Training Dataset
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from transformers import AutoTokenizer 
from datasets import load_dataset 
  
dataset_id = "Jiayi-Pan/Countdown-Tasks-3to4" 
dataset = load_dataset(dataset_id, split="train") 
dataset = dataset.shuffle(seed=42).select(range(50000))

{'target': 88, 'nums': [95, 21, 3]} 
{'target': 62, 'nums': [22, 29, 69]} 
{'target': 17, 'nums': [9, 73, 38, 2]} 
{'target': 98, 'nums': [33, 4, 2, 59]} 
{'target': 53, 'nums': [25, 42, 13, 83]} 
{'target': 19, 'nums': [15, 23, 57]} 
{'target': 47, 'nums': [2, 37, 5]} 
{'target': 71, 'nums': [74, 39, 66, 81]} 
{'target': 26, 'nums': [98, 58, 47, 33]} 
{'target': 83, 'nums': [67, 65, 87, 38]}
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tokenizer = AutoTokenizer.from_pretrained(“Qwen/Qwen2.5-3B-Instruct") 

def generate_r1_prompt(numbers, target): 
    r1_prefix = [{ 
        "role": "system", 
        "content": "You are a helpful assistant. You first thinks about the reasoning 
process in the mind and then provides the user with the answer." 
      }, 
      {  
        "role": "user", 
        "content": f"Using the numbers {numbers}, create an equation that equals {target}. 
You can use basic arithmetic operations (+, -, *, /) and each number can only be used 
once. Show your work in <think> </think> tags. And return the final equation and 
answer in <answer> </answer> tags, for example <answer> (1 + 2) / 3 = 1 </answer>." 
      }, 
      { 
        "role": "assistant", 
        "content": "Let me solve this step by step.\n<think>" 
      }] 
    return {"prompt": tokenizer.apply_chat_template(r1_prefix, tokenize=False, 

 continue_final_message=True), "target": target}
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# convert our dataset to the r1 prompt 
dataset = dataset.map(lambda x: generate_r1_prompt(x["nums"], x["target"])) 
  
# split the dataset into train and test 
train_test_split = dataset.train_test_split(test_size=0.1) 
  
train_dataset = train_test_split["train"] 
test_dataset = train_test_split["test"]



Reward Functions
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GRPOTrainer needs reward function (s) to evaluate model 

Use 
Properly formatted response 
Correct equation 

Numbers used only once 
Math is done correctly



Train the model using GRPO
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import re 
  
def format_reward_func(completions, target, **kwargs): 
    """Format: <think>...</think><answer>...</answer>""" 
    rewards = [] 
  
    for completion, gt in zip(completions, target): 
      try: 
        completion = "<think>" + completion         
        # Check if the format is correct 
        regex = r"^<think>([^<]*(?:<(?!/?think>)[^<]*)*)<\/think>\n<answer>([\s\S]*?)<\/answer>$" 
  
        match = re.search(regex, completion, re.DOTALL)  
        # if the format is not correct, reward is 0 
        if match is None or len(match.groups()) != 2: 
            rewards.append(0.0) 
        else: 
            rewards.append(1.0) 
      except Exception: 
        rewards.append(0.0) 
    return rewards
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def equation_reward_func(completions, target, nums, **kwargs): 
    rewards = [] 
    for completion, gt, numbers in zip(completions, target, nums): 
      try: 
       completion = "<think>" + completion 
        match = re.search(r"<answer>(.*?)<\/answer>", completion)    # Is format correct 
        if match is None: 
            rewards.append(0.0) 
            continue 
        equation = match.group(1).strip() 
        used_numbers = [int(n) for n in re.findall(r'\d+', equation)] 
         
        if sorted(used_numbers) != sorted(numbers): # Check if all numbers are used exactly once 
            rewards.append(0.0) 
            continue 
        allowed_pattern = r'^[\d+\-*/().\s]+$' 
        if not re.match(allowed_pattern, equation): 
           rewards.append(0.0) 
           continue 
         
        result = eval(equation, {"__builtins__": None}, {}) # Evaluate the equation 
        if abs(float(result) - float(gt)) < 1e-5: # Is equation correct  
            rewards.append(1.0) 
        else: 
            rewards.append(0.0) 
      except Exception: 
            rewards.append(0.0)  
    return rewards
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correct_sample_1 = """We need to find an equation using the numbers 19, 36, 55, and 7 
exactly once, with basic arithmetic operations, that equals 65. One possible 
combination is 55 + 36 - 19 + 7... </think> 
<answer> 55 + 36 - 7 - 19 </answer>""" 
  
correct_sample_2 = """ ... </think> 
<answer> 55 + 36 - 7 - 19 </answer>""" 
  
wrong_format = """User: Using the numbers [19, 36, 55, 7], create an equation that equals 65.""" 
  
wrong_format_2 = """To find the equation that equals 79 using the numbers 95, 78, 6, 88, I'll start by adding 88 
and 95:                       
95 + 88 = 183                                                                                                               
Now, let's subtract 104 from 183 to get 79: 
183 - 104 = 79 
<think> 183 - 104 = 79 </think><think> 183 - 104 = 79 </think><answer> 183 - 104 = 79 </answer>""" 
  
wrong_result = """ ... </think> 
<answer> 55 + 36 - 7 - 18 </answer>""" 
  
  
test_rewards = format_reward_func(completions=[correct_sample_1, correct_sample_2, wrong_format, 
wrong_format_2, wrong_result], target=["65", "65", "65", "65", "65"], nums=[[19, 36, 55, 7]] * 5) 
assert test_rewards == [1.0, 1.0, 0.0, 0.0, 1.0], "Reward function is not working" 
test_rewards = equation_reward_func(completions=[correct_sample_1, correct_sample_2, wrong_format, 
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test_rewards = format_reward_func( 
completions=[correct_sample_1, correct_sample_2, wrong_format, wrong_format_2, wrong_result],  
target=["65", "65", "65", "65", "65"],  
nums=[[19, 36, 55, 7]] * 5) 

assert test_rewards == [1.0, 1.0, 0.0, 0.0, 1.0], "Reward function is not working”

test_rewards = equation_reward_func( 
completions=[correct_sample_1, correct_sample_2, wrong_format, wrong_format_2, wrong_result],  
target=["65", "65", "65", "65", "65"],  
nums=[[19, 36, 55, 7]] * 5) 

assert test_rewards == [1.0, 1.0, 0.0, 0.0, 0.0], "Reward function is not working"
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from trl import GRPOConfig, GRPOTrainer, get_peft_config, ModelConfig 
  
# our model we are going to use as policy  
model_config = ModelConfig( 
    model_name_or_path="Qwen/Qwen2.5-3B-Instruct", 
    torch_dtype="bfloat16", 
    attn_implementation="flash_attention_2", 
    use_peft=True, 
    load_in_4bit=True, 
)
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# Hyperparameters 
training_args = GRPOConfig( 
    output_dir="qwen-r1-aha-moment", 
    learning_rate=5e-7, 
    lr_scheduler_type="cosine", 
    logging_steps=10, 
    max_steps=100, 
    per_device_train_batch_size=1, 
    gradient_accumulation_steps=1, 
    gradient_checkpointing=True, 
    gradient_checkpointing_kwargs={"use_reentrant": False}, 
    bf16=True, 
    # GRPO specific parameters 
    max_prompt_length=256, 
    max_completion_length=1024, # max length of the generated output for our solution 
    num_generations=2, 
    beta=0.001, 
   )
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trainer = GRPOTrainer( 
    model=model_config.model_name_or_path, 
    reward_funcs=[format_reward_func, equation_reward_func], 
    args=training_args, 
    train_dataset=train_dataset, 
    eval_dataset=test_dataset, 
    peft_config=get_peft_config(model_config), 
)

# Train and push the model to the Hub 
trainer.train() 
# Save model 
trainer.save_model(training_args.output_dir)



Run Time
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On single CPU, GPU 20 minutes per step, but need 450 steps

Using 
vLLM 
DeepSpeed 
4 H100 80GBs 

Took 6 hours



Hyperparameters

68

Started with DeepSeekMath paper values 
learning rate of 1e-6   
beta (KL coefficient) of 0.04

Unstable training runs after around 150 steps

So used learning rate to 5e-7 and the beta to 0.001



Full Parameter List
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torch_dtype: bfloat16 
attn_implementation: flash_attention_2 
bf16: true 
tf32: true 
output_dir: runs/qwen-2.5-3b-r1-countdown 

# Dataset arguments 
dataset_id_or_path: Jiayi-Pan/Countdown-Tasks-3to4 

# Lora Arguments 
# No LoRA is used here 

# Training arguments 
max_steps: 450 
per_device_train_batch_size: 1 
gradient_accumulation_steps: 8 
gradient_checkpointing: true 
gradient_checkpointing_kwargs: 
  use_reentrant: false 
learning_rate: 5.0e-7 # 1.0e-6 as in the deepseek math paper 5-e7 from https://hijkzzz.notion.site/unraveling-rlhf-and-its-variants-engineering-insights#147d9a33ecc9806090f3d5c749d31f05 
lr_scheduler_type: cosine 
warmup_ratio: 0.03 
# GRPO specific parameters 
beta: 0.001 # 0.04 as in the deepseek math paper 0.001 from https://hijkzzz.notion.site/unraveling-rlhf-and-its-variants-engineering-insights#147d9a33ecc9806090f3d5c749d31f05 
max_prompt_length: 256 
max_completion_length: 1024 
num_generations: 8 
use_vllm: true 
# vllm_device: "cuda:3" 
vllm_gpu_memory_utilization: 0.5 

# Logging arguments 
logging_strategy: steps 
logging_steps: 2 
report_to: 
- tensorboard 
save_strategy: "steps" 
save_steps: 25 
seed: 42 



Training Observations
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~50 steps  
the model has learned the correct format <think>...</think>\n<answer>...</answer>. 

100 steps  
Success rate for solving the equation is around 25%. The model  
starts to "reason" with words 

200 steps the  
Performance seems to converge much slower  
~40% success rate.  
Learns a new "format" where it solves the equation by trying different combinations and 
reviewing the results,  

450 steps  
50% success  
The performance still improves slowly  
Model kept its new format form from step 200. 



Successfull Reasoning Sample up to step 200
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<think> First, I need to think about the numbers we have: 14, 70, and 80. To get 85, I think 80 might 
be a good starting point because it's right in between 85. If I subtract or add 80, it won't lead to 85 
easily. Next, 70 seems to be a good intermediate number, especially to use in conjunction with 14.  

Now, I can think about different combinations using addition, subtraction and multiplication/division. If 
I take 80 - 70 = 10, which is not needed. So, I need to find a way to use 14. If I subtract 14 from 80, I 
get 66, which still isn't 85. If I subtract 70 from 80, I get 10 again, this isn't constructive yet.  

Multiplication could create numbers larger than the target 85. Let's consider division: If I divide 70 by 
14, I get 5. Then if I add this result to 80, I get 85. This combination seems promising: 80 - (70 / 14) = 
80 - 5 = 75, this still isn't quite right. Let me correct my approach: Let's use division and then addition. 
If I take 80 / (70 / 14) → 80 / 5 = 16, and then 80 - 16 = 64, still incorrect. Let me simplify: 80 / (70 / 
14) → 80 / 5 = 16, and then 80 - 16 gives 64 again, let me correct: 80 - (70 / 14) → 80 - 5 = 75, but I 
need 85. Thus I will use the combinations in a slightly different order to insert numbers: I get 80 + 
(70 / 14) = 80 + 5 = 85</think> 

<answer> 80 + (70 / 14) </answer>



Successfull Reasoning Sample between step 200 and 450

72

<think> We need to use the numbers 39, 16, and 55 with basic arithmetic operations to get 78. 
Let's try different combinations: 
- 55 + 39 - 16 = 84 - 16 = 68 (too low) 
- 55 + 16 - 39 = 71 - 39 = 32 (too low) 
- 55 - 16 + 39 = 39 + 39 = 78 (this works) 
So, the equation is 55 - 16 + 39 = 78. </think> 
<answer> 55 - 16 + 39 </answer>


