
CS 696 Applied Large Language Models
Spring Semester, 2025

Doc 17 News, Activation Steering, Performance Issues v2
Mar 20, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/
openpub/) license defines the copyright on this document.

Generative AI use surging among consumers for online shopping

2

https://searchengineland.com/generative-ai-surging-online-shopping-report-453312

Adobe Analytics platform
1 trillion visits to U.S. retail sites

Nov. 1 and Dec. 31,
traffic from generative AI sources increased by 1,300% compared to the year prior

February,
Traffic from generative AI sources increased by 1,200% compared to July 2024

But don’t give absolute numbers

0.001% -> 0.01% is a 1,000% increase

Startups are fastest growing

3

https://www.cnbc.com/2025/03/15/y-combinator-startups-are-fastest-growing-in-fund-history-
because-of-ai.html

Y Combinator CEO Garry Tan
For about a quarter of the current YC startups,
95% of the code was written by AI

“…you don’t need a team of 50 or 100 engineers,”

For the last nine months, the entire batch of YC companies in aggregate grew
10% per week, he said.

More than a quarter of computer-programming jobs just vanished

4

What happened?
https://www.washingtonpost.com/business/2025/03/14/programming-
jobs-lost-artificial-intelligence/
March 14, 2025

https://www.washingtonpost.com/business/2025/03/14/programming-jobs-lost-artificial-intelligence/
https://www.washingtonpost.com/business/2025/03/14/programming-jobs-lost-artificial-intelligence/

5

6

7

Which Economic Tasks are Performed with AI?
Evidence from Millions of Claude Conversations

https://assets.anthropic.com/m/2e23255f1e84ca97/original/Economic_Tasks_AI_Paper.pdf

Tasks and occupations

Four million Claude.ai conversations

December 2024 and January 2025

8

Depth of AI usage across occupations

9

Distribution of occupational skills

10

Occupational usage of Claude.ai by annual wage

11

Augmentation vs Automation

12

Where are facts stored in LLMs

13

https://medium.com/@nikhilanandnj/where-are-facts-stored-in-large-language-
models-0869914cfcbf

Locating and Editing Factual Associations in GPT

14

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

15

16

MLP layers had a more significant causal effect than attention layers

Total Effect

17

Indirect Effect

18

Activation Steering

19

Understanding “steering” in LLMs
https://ai.gopubby.com/understanding-steering-in-llms-96faf6e0bee7

Control and guide LLM outputs by modifying neuron activations

Activation Steering

20

Understanding “steering” in LLMs
https://ai.gopubby.com/understanding-steering-in-llms-96faf6e0bee7

Activation Steering - Finding Concept Vector

21

Collect Activation Data

Select a set of prompts that strongly exhibit the concept.
Example: Positivity:

“Describe a beautiful day.”
“Tell me something inspiring.”
“What makes people happy?”

Select a contrasting set of prompts that do not exhibit the concept.
Example: Neutral or negative:

“What are common problems in life?”
“Describe a tragic event.”
“What makes people sad?”

Pass these prompts through the model
Extract the hidden layer activations at a specific layer.

22

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

23

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

GPT-3.5 Boost in Relavance

24

A Sober Look at Steering Vectors for LLMs

25

by Joschka Braun, Dmitrii Krasheninnikov, Usman Anwar, RobertKirk,
Daniel Tan, David Scott Krueger

LESSWRONG, Nov 23, 2004

Typically used performance metrics overestimate steering effectiveness

Evaluated in artificial settings

Current steering methods have substantial limitations

Many steering methods
unreliable
often fail to generalize outside their specific training setup

Steerability of different concepts varies significantly

Methods are not compared on the same benchmarks and metrics

Mayo Clinic’s secret weapon against AI hallucinations

26

Reverse RAG in action

https://venturebeat.com/ai/mayo-clinic-secret-weapon-against-ai-hallucinations-reverse-rag-in-action/

“The hospital has employed what is essentially backwards RAG, where the model extracts
relevant information, then links every data point back to its original source content.

Remarkably, this has eliminated nearly all data-retrieval-based hallucinations in non-
diagnostic use cases — allowing Mayo to push the model out across its clinical practice.”

Mayo Clinic’s secret weapon against AI hallucinations

27

Reverse RAG in action

https://usmanshaheen.wordpress.com/2025/03/14/reverse-rag-reduce-hallucinations-and-errors-in-
medical-genai-part-1/

Mayo Clinic’s secret weapon against AI hallucinations

28

Reverse RAG in action

https://usmanshaheen.wordpress.com/2025/03/14/reverse-rag-reduce-hallucinations-and-errors-in-
medical-genai-part-1/

Data Extraction
LLM reads patients’ records
Produces a summary or a list of facts

Fact Splitting

Output split into individual data points

Source Matching
AI is asked: “Where did this piece of information come from?”

Verification
A second LLM then compares each fact to the source
Scores how well they align
Looked for a causal relationship

Output with References
Only facts with solid support are kept

Retrieval-Augmented Generation (RAG)

29

The paper "What Does BERT Look At? An Analysis of BERT’s Attention"
by Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D.
Manning explores the attention mechanisms of BERT to understand what
linguistic structures it learns during self-supervised training. The study
analyzes attention heads in BERT to identify patterns in how they attend to
different tokens in input sequences. Key findings reveal that certain
attention heads specialize in specific linguistic roles, such as attending to
direct objects of verbs, determiners of nouns, or coreferent mentions, often
with high accuracy. The authors also observe that BERT frequently attends
to special tokens like [SEP], sometimes using them as a "no-op" when
attention functions are not needed. Additionally, attention heads tend to
cluster by behavior, with similar functions appearing in the same layers.

Retrieval-Augmented Generation (RAG)

30

Augment query with content from a document database

blob:https://chatgpt.com/7120a495-3da4-4d4b-9f2c-8b9b2145c41d

31

Embedding and Vector Database

32

Goal
Find documents that are relevant to a query

Issue
Textual search is not good at finding relevant documents

Divide document into chunks

Convert chunks into embedded vectors

Store each embedded vector with link to document

Searching for Similar Vectors

33

Euclidean Distance

def euclidean_distance(vec1, vec2):
 return np.linalg.norm(vec1 - vec2)

Dot Product

Cosine distance

def cosine_distance(vec1,vec2):
 cosine = 1 - abs((np.dot(vec1,vec2)/(
 np.linalg.norm(vec1)*np.linalg.norm(vec2))))
 return cosine

Unlocking Data with Generative AI and RAG, Keith Bourne

Searching for Similar Vectors

34

S1 = 'This blanket has such a cozy temperature for me!',
S2 ='I am so much warmer and snug using this spread!',
S3='Taylor Swift was 34 years old in 2024.'

Embed them as a vector

Euclidean
Distance Dot Product

Cosine
Distance

S1 & S2 4.6 12.3 0.45

S1 & S3 7.3 -0.8 0.97

S2 & S3 6.3 0.9 0.95

Unlocking Data with Generative AI and RAG, Keith Bourne

SentenceTransformer

35

from sentence_transformers import SentenceTransformer

1. Load a pretrained Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")

The sentences to encode
sentences = [
 "The weather is lovely today.",
 "It's so sunny outside!",
 "He drove to the stadium.",
]

2. Calculate embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)
[3, 384]

3. Calculate the embedding similarities
similarities = model.similarity(embeddings, embeddings)
print(similarities)

tensor([[1.0000,	0.6660,	0.1046],	
								[0.6660,	1.0000,	0.1411],	
								[0.1046,	0.1411,	1.0000]])

https://www.sbert.net/index.html

SentenceTransformer - Models

36

Original Models

Semantic Search Models

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("multi-qa-mpnet-base-cos-v1")

query_embedding = model.encode("How big is London")
passage_embeddings = model.encode([
 "London is known for its financial district",
 "London has 9,787,426 inhabitants at the 2011 census",
 "The United Kingdom is the fourth largest exporter of goods in the world",
])

similarity = model.similarity(query_embedding, passage_embeddings)

tensor([[0.4656, 0.6142, 0.2697]])

SentenceTransformer - Models

37

Multi-QA Models

Trained on 215M question-answer pairs from various
sources and domains, including StackExchange, Yahoo
Answers, Google & Bing search queries

Multilingual Models

ar, bg, ca, cs, da, de, el, en, es, et, fa, fi, fr, fr-ca, gl, gu,
he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr,
ms, my, nb, nl, pl, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr,
uk, ur, vi, zh-cn, zh-tw.

Semantically similar sentences within one language or across languages

Joint Image & Text Embeddings

38

from sentence_transformers import SentenceTransformer, util
from PIL import Image
import glob
import torch
import pickle
import zipfile
from IPython.display import display
from IPython.display import Image as IPImage
import os
from tqdm.autonotebook import tqdm
torch.set_num_threads(4)

#First, we load the respective CLIP model
model = SentenceTransformer('clip-ViT-B-32')

Download Images

39

Next, we get about 25k images from Unsplash
img_folder = 'photos/'
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
 os.makedirs(img_folder, exist_ok=True)

 photo_filename = 'unsplash-25k-photos.zip'
 if not os.path.exists(photo_filename): #Download dataset if does not exist
 util.http_get('http://sbert.net/datasets/'+photo_filename, photo_filename)

 #Extract all images
 with zipfile.ZipFile(photo_filename, 'r') as zf:
 for member in tqdm(zf.infolist(), desc='Extracting'):
 zf.extract(member, img_folder)

Compute the embeddings

40

use_precomputed_embeddings = True

if use_precomputed_embeddings:
 emb_filename = 'unsplash-25k-photos-embeddings.pkl'
 if not os.path.exists(emb_filename): #Download dataset if does not exist
 util.http_get('http://sbert.net/datasets/'+emb_filename, emb_filename)

 with open(emb_filename, 'rb') as fIn:
 img_names, img_emb = pickle.load(fIn)
 print("Images:", len(img_names))
else:
 img_names = list(glob.glob('unsplash/photos/*.jpg'))
 print("Images:", len(img_names))
 img_emb = model.encode([Image.open(filepath) for filepath in img_names], batch_size=128,
convert_to_tensor=True, show_progress_bar=True)

Search function

41

Next, we define a search function.
def search(query, k=3):
 # First, we encode the query (which can either be an image or a text string)
 query_emb = model.encode([query], convert_to_tensor=True, show_progress_bar=False)

 # Then, we use the util.semantic_search function, which computes the cosine-similarity
 # between the query embedding and all image embeddings.
 # It then returns the top_k highest ranked images, which we output
 hits = util.semantic_search(query_emb, img_emb, top_k=k)[0]

 print("Query:")
 display(query)
 for hit in hits:
 print(img_names[hit['corpus_id']])
 display(IPImage(os.path.join(img_folder, img_names[hit['corpus_id']]), width=200))

A Search

42

search("Two dogs playing in the snow")

43

For Mac Users - MPS backend

44

For Mac Users - MPS backend

45

Check that MPS is available
if not torch.backends.mps.is_available():
 if not torch.backends.mps.is_built():
 print("MPS not available because the current PyTorch install was not "
 "built with MPS enabled.")
 else:
 print("MPS not available because the current MacOS version is not 12.3+ "
 "and/or you do not have an MPS-enabled device on this machine.")

else:
 mps_device = torch.device("mps")

 # Create a Tensor directly on the mps device
 x = torch.ones(5, device=mps_device)
 # Or
 x = torch.ones(5, device="mps")

 # Any operation happens on the GPU
 y = x * 2

 # Move your model to mps just like any other device
 model = YourFavoriteNet()
 model.to(mps_device)

 # Now every call runs on the GPU
 pred = model(x)

pip install torch torchvision torchaudio

For Mac Users - MPS backend

46

Can only use 1 GPU

Some PyTorch operations are not implemented in MPS yet and will throw an error
Set the environment variable PYTORCH_ENABLE_MPS_FALLBACK=1

Huggingface Recommendations

47

Method/tool Improves training speed Optimizes memory utilization

Batch size choice Yes Yes

Gradient accumulation No Yes

Gradient checkpointing No Yes

Mixed precision training Yes Maybe*

torch_empty_cache_steps No Yes

Optimizer choice Yes Yes

Data preloading Yes No

DeepSpeed Zero No Yes

torch.compile Yes No

Parameter-Efficient Fine Tuning (PEFT) No Yes

https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments.torch_empty_cache_steps

Batch size & Layer Size

48

Batch sizes and input/output neuron counts use size 2^N.

Larger layers are more efficent to process

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-
features

Batch size & Layer Size

49

Batch sizes
Larger size more efficient
Requires more memory

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-
features

Batch size & Layer Size

50

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-
features

Batch sizes 128 and below are bandwidth limited on NVIDIA A100 accelerators.

Gradient Accumulation

51

Calculate gradients in smaller increments due to memory constraints

training_args = TrainingArguments(
per_device_train_batch_size=1,
gradient_accumulation_steps=4, **default_args)

Gradient Checkpointing

52

Activations from the forward pass consume a lot of memory

Deleting them and recomputing in the backward pass
Saves memory but slows down backward pass

Gradient checkpointing
Saves strategically selected activations
Only a fraction of the activations need to be re-computed for the gradients.

training_args = TrainingArguments(
 per_device_train_batch_size=1,

gradient_accumulation_steps=4,
gradient_checkpointing=True,
**default_args

)

Gradient Checkpointing

53

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

batch size = 1280

Pebble Analogy

54

Pebble Analogy

55

Gradient Computation

56

Checkpoints every sqrt(n) steps

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

FlashAttention-2

57

Additionally parallelizing the attention computation over sequence length

Partitioning the work between GPU threads to reduce communication and shared
memory reads/writes

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
 model_id,
 torch_dtype=torch.bfloat16,
 attn_implementation="flash_attention_2",
)

model’s dtype must be fp16 or bf16

DeepSpeed Good Practices in Training

58

Version Control and Reproducibility

Use some form of version control
Save the `githash`

Save all the hyperparameters associated with the experiment

Seed your random generators

Specify all the packages and their versions

`requirements.txt` file,
conda `env.yaml` file or
`pyproject.toml` file

DeepSpeed Good Practices in Training

59

Seed your random generators

import torch
torch.manual_seed(0)

import random
random.seed(0)

import numpy as np
np.random.seed(0)

https://pytorch.org/docs/stable/notes/randomness.html

DeepSpeed Good Practices in Training

60

Seed your random generators

CUDA convolution

Based on parameters, cuDNN will select the fastest algorithm
Different runs end up with different results

torch.backends.cudnn.benchmark = False
Causes cuDNN to deterministically select an algorithm

Avoiding nondeterministic algorithms

torch.use_deterministic_algorithms()

https://pytorch.org/docs/stable/notes/randomness.html

DeepSpeed Good Practices in Training

61

Seed your random generators

https://pytorch.org/docs/stable/notes/randomness.html

DataLoader

Default - each worker gets
different random seed

def seed_worker(worker_id):
 worker_seed = torch.initial_seed() % 2**32
 numpy.random.seed(worker_seed)
 random.seed(worker_seed)

g = torch.Generator()
g.manual_seed(0)

DataLoader(
 train_dataset,
 batch_size=batch_size,
 num_workers=num_workers,
 worker_init_fn=seed_worker,
 generator=g,
)

DeepSpeed Good Practices in Training

62

Writing Unit Tests

63

def test_model_checkpointing(checkpoint_dir: str):
 train_params = {
 "checkpoint_dir": checkpoint_dir,
 "checkpoint_every": 2,
 "num_layers": 2,
 "num_heads": 4,
 "ff_dim": 64,
 "h_dim": 64,
 "num_iterations": 5,
 }
 exp_dir = train(**train_params)
 # now check that we have 3 checkpoints
 assert len(list(exp_dir.glob("*.pt"))) == 3
 model = create_model(
 num_layers=train_params["num_layers"],
 num_heads=train_params["num_heads"],
 ff_dim=train_params["ff_dim"],
 h_dim=train_params["h_dim"],
 dropout=0.1,
)
 optimizer = torch.optim.Adam(model.parameters())
 step, model, optimizer = load_model_checkpoint(exp_dir, model, optimizer)
 assert step == 5
 model_state_dict = model.state_dict()
 correct_state_dict = torch.load(exp_dir / "checkpoint.iter_5.pt")
 correct_model_state_dict = correct_state_dict["model"]

 assert set(model_state_dict.keys()) == set(correct_model_state_dict.keys())
 assert all(
 torch.allclose(model_state_dict[key], correct_model_state_dict[key])
 for key in model_state_dict.keys()
)
 # Finally, try training with the checkpoint
 train_params.pop("checkpoint_dir")
 train_params["load_checkpoint_dir"] = str(exp_dir)
 train_params["num_iterations"] = 10
 train(**train_params)

