CS 696 Applied Large Language Models
Spring Semester, 2025
Doc 17 News, Activation Steering, Performance Issues v2
Mar 20, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/
openpub/) license defines the copyright on this document.

Generative Al use surging among consumers for online shopping

Adobe Analytics platform
1 trillion visits to U.S. retail sites

Nov. 1 and Dec. 31,
traffic from generative Al sources increased by 1,300% compared to the year prior

February,
Traffic from generative Al sources increased by 1,200% compared to July 2024

But don'’t give absolute numbers

0.001% -> 0.01% is a 1,000% increase

https://searchengineland.com/generative-ai-surging-online-shopping-report-453312

2

Startups are fastest growing

Y Combinator CEO Garry Tan
For about a quarter of the current YC startups,
95% of the code was written by Al

“...you don’t need a team of 50 or 100 engineers,”

For the last nine months, the entire batch of YC companies in aggregate grew
10% per week, he said.

https://www.cnbc.com/2025/03/15/y-combinator-startups-are-fastest-growing-in-fund-history-
because-of-ai.html

More than a quarter of computer-programming jobs just vanished

What happened?
https://www.washingtonpost.com/business/2025/03/14/programming-
jobs-lost-artificial-intelligence/

March 14, 2025

Total U.S. computer-programmer employment

800K 27.5% drop
(in the 12-month
average)

700K

600K

500K

400K

300K

200K

100K

0
1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Note: Dark line shows 12-month average

Source: Current Population Survey from the Bureau of Labor Statistics via

IPUMS DEPARTMENT OF DATA / THE WASHINGTON POST

4

https://www.washingtonpost.com/business/2025/03/14/programming-jobs-lost-artificial-intelligence/
https://www.washingtonpost.com/business/2025/03/14/programming-jobs-lost-artificial-intelligence/

The government began tracking software developers in 2003

Total U.S. employment for select occupations

2.5M
--Software
developers
2M
1.5M
iM
500K
--Computer
programmers
0

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Note: Dark line shows 12-month average

Source: Current Population Survey from the Bureau of Labor Statistics via

IPUMS DEPARTMENT OF DATA / THE WASHINGTON POST

Employment in the computer and data-processing services industry

5M Dec. —
2022

4aM

Dot-com

SM boom \

2M

iM

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Note: Dark line shows 12-month average

Source: Source: Current Population Survey from the Bureau of Labor Statistics

via IPUMS DEPARTMENT OF DATA / THE WASHINGTON POST

Which Economic Tasks are Performed with Al?
Evidence from Millions of Claude Conversations

Four million Claude.ai conversations
December 2024 and January 2025

Tasks and occupations

https://assets.anthropic.com/m/2e23255f1e84ca97/original/Economic_Tasks Al Paper.pdf

7

Conversations

User: My game keeps crashing as |
only have 8GB of RAM...

Assistant: | can help you optimize
your game settings! Let's lower th...

User: Could you look over my blog
post about the Golden Gate Bridge?

o—r
Assistant: I'd be happy to review
your blog post about the Golden...
User: Can you make sure this
blogpost follows Chicago style?
o—r

Assistant: I'll help align your
blogpost with Chicago style guide...

Wage vs. Al Usage

. <
)
@]

% of Conversations

Tasks

& O*NEYT TASK

Modify software to improve
performance and adapt to new
hardware

&5 O*NEY TASK

Review and rewrite content for &
publication approval

& O*NEY TASK

Standardize materials from *—
other writers and staff

Medion Saolory

Occupations

L

<>

Computer &
Mathematical

A Life, Physical & Social Science

T

¢

Augmentative vs.
Automative Tasks

<4 .
“Omentat™®

g 15
Arts & Media Education & Library
& Office & Administrative =)
Business &
Financial

Skills Breakdown
wridng |

\ Time management
\ Installation

APPLICATIONS

onet

Depth of Al usage across occupations

Fraction of

Occupations

1.0

0.8

0.6 1

~36% of occupations have
at least 25% of tasks

0.2 1
~11% of occupations have
at least 50% of tasks
~4% of occupations have
at least 75% of tasks
0.0 1 SRS
0.0 0.2 0.4 0.6 0.8

Minimum Fraction of Tasks in Use

1.0

Skills

Distribution of occupational skills

Critical Thinking
Active Listening
Reading Comprehension
Writing
Systems Analysis
Programming
Complex Problem Solving
Instructing
Troubleshooting
Social Perceptiveness
Service Orientation
Technology Design
Judgment And Decision Making
Mathematics
Operations Analysis
Science
Speaking
Coordination
Persuasion
Systems Evaluation
Learning Strategies
Quality Control Analysis
Management Of Financial Resources
Time Management
Active Learning
Management Of Personnel Resources
Monitoring
Operations Monitoring
Equipment Selection
Negotiation
Installation
Equipment Maintenance
Management Of Material Resources
Operation And Control
Repairing v ‘ ' , |
0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Percentage of Total Records (%)

Percent of Conversations

Occupational usage of Claude.ai by annual wage

Computer Programmers

6%
Software Developers,
Systems Software
5%
4%
Software Developers,
Applications
Bioinformatics
3% Technicians
2%
Tutors Copy Writers
1%
0% Shomnicoali:. ook sect b tie sl iRl 8880 X e sen b 2§ <320, 1. ¢ 3
$25,000 $50,000 $75,000 $100,000 $125,000

Annual Wage ($)

$150,000

$175,000

.

$200,000

Obstetricians and
- .
Gynecologists

Augmentation vs Automation

Augmentation pEIZ

I Validation
B Task iteration
B Learning

Bl Feedback loop
B Directive

Automation

I | | | | | |
0 10% 20% 30% 40% 50% 60%

Percentage of Conversations

Where are facts stored in LLMs

https://medium.com/@nikhilanandnj/where-are-facts-stored-in-large-language-
models-0869914cfcbf

Locating and Editing Factual Associations in GPT

Clean

3 runs == Corrupted
\ Corrupted-with-restoration

(a) The £+O . e ® (5) The* & O . O h{’ state
Clean w\. LORD CCH L Corrupted = L<>‘TA Lo R] attention
run Space PRI ST RILOT B BT 0 subject Sacett ORI ST TR Omrp
Need Qi 7R AT " @i AT e run Need*&-O I~ 7= &] corrupted
i o -0 O Lof BP0 B0 embedding
le = .m’./ﬂ. O a.-. see ./H'" @) o [“? ’ ./ﬂ. ’ .{@ e le flow
is Q) O O—p>++++Q) O (c) Patch Nare O O+
o] ol P -H'.‘ fean states =HLO PO BOY (d) Note when
owntown 2= WS = IV 4= A = | WV Seattle downtown J D) e 2L 2
-0 -0 - @ (correct output) - L<>j L<>I = (corrupted output)

(e) Impact of restoring state after corrupted input (f) Impact of restoring MLP after corrupted input (g) Impact of restoring Attn after corrupted input

The* 4 The* - 0.8 The*
Space* 1 0.8 Space* Space® - 0.6
Need* - carly site 0.6 Need* - carly site 0.6 Need* -
is 0.4 s ' is
in late site - 0.2 in - 0.2 in - late site 0.2
downtown - downtown - downtown
0 5 10 15 20 25 30 35 40 p(Seattle) 0 5 10 15 20 25 30 35 40 p(Secatle) 0 5 10 15 20 25 30 35 40 p(Seattle)
single restored layer within GPT-2-XL center of interval of 10 restored MLP layers center of interval of 10 restored Attn layers

Figure 1: Causal Traces compute the causal effect of neuron activations by running the network twice: (a)
once normally, and (b) once where we corrupt the subject token and then (c) restore selected internal activations
to their clean value. (d) Some sets of activations cause the output to return to the original prediction; the light
blue path shows an example of information flow. The causal impact on output probability is mapped for the
effect of (e) each hidden state on the prediction, (f) only MLP activations, and (g) only attention activations.

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

“Space Needle is located in the city of Seattle”

b et

RAL S
L\Wi! | D |
| \-, \".“‘ L 2 IA-" al

R, B0 B

“Space Needle is located in the city of”

“Space Needle is located in the city of cro”

B B

AR

NI DaA++antinnm
MLP+Attention

Corruption of Oth
5 layer hidden state

Y 4 e, B0 +¢,... 80 +e
0 0 0
BB B

“Space Needle is located in the city of”

+ €

“Space Needle is located in the city of Seattle”

Unembed

h;,r(L), h;,T‘(L)’ o h;ﬂ(L)

MLP+Attention
h(’;(i), - hfi), .. h}(z) Restoration of hidden
. state at (i,l)
ALl g SR
MLP+Attention

h((]o) +e,h§0) +e,...h£r0) fie
5 €
h, b, .. A
emb + pos
“Space Needle is located in the city of”

MLP layers had a more significant causal effect than attention layers

16

Total Effect
o = “Seattle”

TE = IP,[o] — IP[o

IP|o] IP, [o]
30%
e >0 3% 3% 2%

Seattle NYC mea Seattle cro

Indirect Effect
IE=PP, .0l — Pio

x,clean

¥,clean hf” [O]

3% 29

IP, [o]
55% _ &
20% differenc 50% 45%
30%
3% 2%
Seattle cro Es Seattle cro

Activation Steering

Control and guide LLM outputs by modifying neuron activations

Yedetdf
Queen
4 \2 g 3
' o o e
King e L
0;,"' S
g g
~ ’
\\ ,,
e ’
“~ ,’
Ss ’

Understanding “steering” in LLMs
https://ai.gopubby.com/understanding-steering-in-lims-96faf6eObee7

Activation Steering

Understanding “steering” in LLMs
https://ai.gopubby.com/understanding-steering-in-lims-96faf6eObee7

20

Activation Steering - Finding Concept Vector

Collect Activation Data

Select a set of prompts that strongly exhibit the concept.
Example: Positivity:

“Describe a beautiful day.”
“Tell me something inspiring.”
“What makes people happy?”

Select a contrasting set of prompts that do not exhibit the concepit.
Example: Neutral or negative:

“What are common problems in life?”
“Describe a tragic event.”
“What makes people sad?”

Pass these prompts through the model

Extract the hidden layer activations at a specific layer.

21

-

_

Prompt 1:
e.g. "l love talking
about weddings"

\

J

.

Prompt 2:
e.g. "l hate talking

about weddings")

find
contrasting

prompts

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

record
activations

embed forward

Steering

vector

diff
activations

Steered
output

prompt &
inject

Algorithm 1 ActAdd, optimization-free activation addition

Input: (p;,p_) = steering prompt pair, tokenized
p* = user prompt
[= target layer
¢ = 1njection coefficient
a = sequence position to align h 4 and h,,-
M = pretrained language model

Output: S = steered output

(p.,p) ¢ pad_right_same_token_len(pi,p—)
h', « M .forward (p').activations [[]

h' + M.forward (p’).activations [[]

h!, + h —h!

h! < M .forward (p*).activations ll]

S < M .continue_forward (ch), + h'@a)

STEERING LANGUAGE MODELS WITH ACTIVATION EN-
GINEERING

23

% evaluated as relevant

25

20

15

10

GPT-3.5 Boost in Relavance

c=0.0
c=0.5
c=1.0
c=2.0

i

art

finance

music

Topic

24

politics

science

weddings

A Sober Look at Steering Vectors for LLMs

by Joschka Braun, Dmitrii Krasheninnikov, Usman Anwar, RobertKirk,
Daniel Tan, David Scott Krueger

LESSWRONG, Nov 23, 2004
Current steering methods have substantial limitations

Many steering methods
unreliable
often fail to generalize outside their specific training setup

Steerability of different concepts varies significantly

Typically used performance metrics overestimate steering effectiveness

Evaluated in artificial settings

Methods are not compared on the same benchmarks and metrics

25

Mayo Clinic’s secret weapon against Al hallucinations

Reverse RAG in action

“The hospital has employed what is essentially backwards RAG, where the model extracts
relevant information, then links every data point back to its original source content.

Remarkably, this has eliminated nearly all data-retrieval-based hallucinations in non-
diagnostic use cases — allowing Mayo to push the model out across its clinical practice.”

https://venturebeat.com/ai/mayo-clinic-secret-weapon-against-ai-hallucinations-reverse-rag-in-action/

26

Mayo Clinic’s secret weapon against Al hallucinations

Reverse RAG in action
B% —
Data Extraction)
and Validation

Az}

Extract Data
from

DATA EXTRACTHON

Extract Data
from Clinical
Notes

Extract Data
from Lab
Reports

Handwritten
Prescriptions

RS

Data with
Multiple LLM

STORAGE PROCESS
© L

Store Verified
Dala as Vector

Cross-Check]

Embeddings

https://Jusmanshaheen.wordpress.com/2025/03/14/reverse-rag-reduce-hallucinations-and-errors-in-
medical-genai-part-1/

27

Mayo Clinic’s secret weapon against Al hallucinations

Reverse RAG in action

Data Extraction

LLM reads patients’ records
Produces a summary or a list of facts

Fact Splitting

Output split into individual data points

Source Matching

Al is asked: “Where did this piece of information come from?”
Verification

A second LLM then compares each fact to the source

Scores how well they align
Looked for a causal relationship

Output with References
Only facts with solid support are kept

https://Jusmanshaheen.wordpress.com/2025/03/14/reverse-rag-reduce-hallucinations-and-errors-in-
medical-genai-part-1/

28

MIW IV IWMM W W W

Retrieval-Augmented Generation (RAG)
o

What Does BERT Look At.pdf
PDF

Summarize the attached paper in one or two paragraphs

+ &P Deep research cee °

The paper "What Does BERT Look At? An Analysis of BERT's Attention"
by Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D.
Manning explores the attention mechanisms of BERT to understand what
linguistic structures it learns during self-supervised training. The study
analyzes attention heads in BERT to identify patterns in how they attend to
different tokens in input sequences. Key findings reveal that certain
attention heads specialize in specific linguistic roles, such as attending to
direct objects of verbs, determiners of nouns, or coreferent mentions, often
with high accuracy. The authors also observe that BERT frequently attends
to special tokens like [SEP], sometimes using them as a "no-op" when
attention functions are not needed. Additionally, attention heads tend to
cluster by behavior, with similar functions appearing in the same layers.

29

Retrieval-Augmented Generation (RAG)

Augment query with content from a document database

Retrieval Augmented Generation (RAG) Sequence Diagram

“ Document Ingestion

——, Preprocess
Documents
Enterprise
Knowledge Base

PDFs ...

Embedding

Model Vector DB

User Query, Retrieval, and
Response Generation

‘ LLM
(potentially prompt-
tuned)

O __ .

[

User

User query

Streamed text response (generative)

blob:https://chatgpt.com/7120a495-3da4-4d4b-9f2c-809b2145c41d

30

' SageMaker Inference ‘
Feature Pipeline Endpoint Answer
- (Gean) (o) (Embed) {_%
Warehouse Prompt
HTTP AP ®)
RAG & fine-tuning data)
Context
Top K results for
: n " :
Article Chunk 1 Search 1 ()
Artide Chonk 2 Ranked Chunks i
Results Rerank x K
: Code CI\ k K —
" Results y \‘ Post Chunk 1
~ " . N X K J
Vector DB Search 2° xK Results Code Chunk 2
“Search N K Result Article Chunk K
; Query . g
N : o
G Filtered Expansion

Vector i
Search :

Search 1 é:

Search 2 @' ' Query N

“Write an article
about...”

®

| g
Search N @‘
. Retrieval ¥ o
Module

31

Embedding and Vector Database

Goal
Find documents that are relevant to a query

Issue

Textual search is not good at finding relevant documents
Divide document into chunks
Convert chunks into embedded vectors

Store each embedded vector with link to document

32

Searching for Similar Vectors

Euclidean Distance

def euclidean_distance(vec1, vec2):
return np.linalg.norm(vec1 - vec2)

Dot Product

Cosine distance
def cosine distance(vec1,vec2):
cosine = 1 - abs((np.dot(vec1,vec2)/(

np.linalg.norm(vec1)*np.linalg.norm(vec2))))
return cosine

Unlocking Data with Generative Al and RAG, Keith Bourne

33

Searching for Similar Vectors

S1 = "This blanket has such a cozy temperature for mel’,
S2 ='l am so much warmer and snug using this spread!’,
S3="Taylor Swift was 34 years old in 2024

Embed them as a vector

Distance | Dot Product | e,
S & S2 46 123 0.45
SI &S3 7.3 038 0.97
$2 & S3 6.3 0.9 0.95

Unlocking Data with Generative Al and RAG, Keith Bourne

34

Se ntenceTransfo rmer https://www.sbert.net/index.html

from sentence_transformers import SentenceTransformer

1. Load a pretrained Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")

The sentences to encode

sentences = [tensor([[1.0000, 0.6660, 0.1046],
"The weather is lovely today.", [0.6660, 1.0000, 0.1411]
"lt's so sunny outside!", [0.1046, 0.1411, 1.0000]])

"He drove to the stadium.”,

2. Calculate embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)

#[3, 384]

3. Calculate the embedding similarities
similarities = model.similarity(embeddings, embeddings)

print(similarities)
35

SentenceTransformer - Models

Original Models

Semantic Search Models

from sentence_transformers import SentenceTransformer
model = SentenceTransformer("multi-qa-mpnet-base-cos-v1")

query_embedding = model.encode("How big is London")
passage _embeddings = model.encode(|
"London is known for its financial district",
"London has 9,787,426 inhabitants at the 2011 census",
"The United Kingdom is the fourth largest exporter of goods in the world",

)

similarity = model.similarity(query _embedding, passage _embeddings)

tensor([[0.4656, 0.6142, 0.2697]])

36

SentenceTransformer - Models

Multi-QA Models

Trained on 215M question-answer pairs from various

sources and domains, including StackExchange, Yahoo
Answers, Google & Bing search queries

Multilingual Models
ar, bg, ca, cs, da, de, el, en, es, et, fa, fi, fr, fr-ca, gl, gu,
he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, It, Iv, mk, mn, mr,

ms, my, nb, nl, pl, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr,
uk, ur, vi, zh-cn, zh-tw.

Semantically similar sentences within one language or across languages

37

Joint Image & Text Embeddings

from sentence_transformers import Sentence Transformer, util
from PIL import Image

import glob

import torch

import pickle

import zipfile

from IPython.display import display

from IPython.display import Image as IPImage
import os

from tqdm.autonotebook import tgdm
torch.set_num_threads(4)

#First, we load the respective CLIP model
model = SentenceTransformer('clip-ViT-B-32")

38

Download Images

Next, we get about 25k images from Unsplash

img_folder = 'photos/'

if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == O:
os.makedirs(img_folder, exist ok=True)

photo_filename = 'unsplash-25k-photos.zip'
if not os.path.exists(photo_filename): #Download dataset if does not exist
util.http_get('http://sbert.net/datasets/'+photo_filename, photo filename)

#Extract all images
with zipfile.ZipFile(photo filename, 'r') as zf:
for member in tgdm(zf.infolist(), desc="Extracting’):
zf.extract(member, img_folder)

39

Compute the embeddings

use precomputed embeddings = True

if use_precomputed embeddings:
emb_filename = 'unsplash-25k-photos-embeddings.pkl’
if not os.path.exists(emb_filename): #Download dataset if does not exist
util.http_get('http://sbert.net/datasets/'+emb_filename, emb_filename)

with open(emb_filename, 'rb') as fln:
img_names, img_emb = pickle.load(fln)
print("Images:", len(img_names))
else:
img_names = list(glob.glob(‘unsplash/photos/*.jpg'))
print("Images:", len(img_names))

img_emb = model.encode([Image.open(filepath) for filepath in img_names], batch_size=128,
convert_to tensor=True, show_progress_bar=True)

40

Search function

Next, we define a search function.
def search(query, k=3):
First, we encode the query (which can either be an image or a text string)
query_emb = model.encode([query], convert_to tensor=True, show progress bar=False)

Then, we use the util.semantic_search function, which computes the cosine-similarity
between the query embedding and all image embeddings.

It then returns the top_k highest ranked images, which we output

hits = util.semantic_search(query_emb, img_emb, top k=k)[0]

print("Query:")

display(query)
for hit in hits:

print(img_names[hit['corpus_id"])
display(IPImage(os.path.join(img_folder, img_nameslhit['corpus_id"]]), width=200))

41

A Search

search("Two dogs playing in the snow")

42

' SageMaker Inference ‘
Feature Pipeline Endpoint Answer
: (Goan) (Ghunc) (Enbed) (_m._1
Warehouse Prompt
HTTP AP ® N
RAG & fine-tuning data)
Context
Top K results for
e W . N
Artide Chonk 2 Ranked Chunks i
Results Rerank x K
Code Chunk K P—
Results Post Chunk 1
” " . N X K /
: Vector DB Search 2° xK Results A U\ 4 Code Chunk 2
search Nl Rese Article Chunk K
; Query . g
N - .
G Filtered Expansion

Vector e
Search :

Search 1 é—):

Search 2 @' ' Query N

“Write an article
about...” :

— Query

Search N @ O

Retrieval =7
Module

43

For Mac Users - MPS backend

Speed up over CPU

25

20

15

10

Accelerated Training and Evaluation on Apple M1 Ultra*

ResNet50
(Batch size = 128)

HuggingFace BERT
(Batch size = 64)

44

VGG16
(Batch size = 64)

B Training
B Evaluation

CPU Baseline

For Mac Users - MPS backend

pip install torch torchvision torchaudio

Check that MPS is available
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")

else:
mps_device = torch.device("mps")

Create a Tensor directly on the mps device
X = torch.ones(5, device=mps_device)

Or

x = torch.ones(5, device="mps")

Any operation happens on the GPU
y=x%*2

Move your model to mps just like any other device
model = YourFavoriteNet()
model.to(mps_device)

Now every call runs on the GPU

pred = model(x) 45

For Mac Users - MPS backend

Can only use 1 GPU

Some PyTorch operations are not implemented in MPS yet and will throw an error
Set the environment variable PYTORCH_ENABLE MPS FALLBACK=1

46

Huggingface Recommendations

Method/tool Improves training speed Optimizes memory utilization
Batch size choice Yes Yes
Gradient accumulation No Yes
Gradient checkpointing No Yes
Mixed precision training Yes Maybe*
torch empty cache steps No Yes
Optimizer choice Yes Yes
Data preloading Yes No
DeepSpeed Zero No Yes
torch.compile Yes No
Parameter-Efficient Fine Tuning (PEFT) | No Yes

47

https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments.torch_empty_cache_steps

Batch size & Layer Size

Batch sizes and input/output neuron counts use size 2*N.

Larger layers are more efficent to process

Performance of Activation Gradient of
Fully-Connected Layer with Batch
Size = 4096, Inputs = 4096

250 -
200

150 1

TFLOPS

100

50 1

0 : . : ! i
28 29 210 211 212 213
Outputs

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-

features
48

Batch size & Layer Size

Batch sizes
Larger size more efficient
Requires more memory

Performance of Forward Propagation
of Fully-Connected Layer with
K = Inputs = 4096, M = Qutputs = 1024
300

2501 : '

200 -

1501

TFLOPS

100+

50+

0 T T T T
2’.'3 2‘.1 21;' 213 21-’- 2‘.5 21(; 21.' 213
N = Batch Size

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-

features
49

Batch size & Layer Size

Batch sizes 128 and below are bandwidth limited on NVIDIA A100 accelerators.

Arithmetic Intensity for a Fully-Connected
Layer with 4096 Inputs and 4096 Outputs

700
600 -
500 -

400 -

—e— Arithmetic Intensity
—e— A100-SXM4-80GB FLOPS/B ratio
300 -

200 1

100 '//

O T T T
64 128 256 512 1024

Batch Size

b
K

Arithmetic Intensity

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-

features
50

Gradient Accumulation

Calculate gradients in smaller increments due to memory constraints

training_args = TrainingArguments(
per_device_ train_batch size=1,
gradient_accumulation_steps=4, **default_args)

51

Gradient Checkpointing

Activations from the forward pass consume a lot of memory

Deleting them and recomputing in the backward pass
Saves memory but slows down backward pass

Gradient checkpointing
Saves strategically selected activations
Only a fraction of the activations need to be re-computed for the gradients.

training_args = TrainingArguments(
per_device train_batch size=1,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
**default_args

52

Gradient Checkpointing

i Iteration Peak Memory batch size — 1280

6000 |
5000
4000 |
3000

2000

> —e— optimized

I —=— regular

1000f _z—o

11 blocks

Iteration Wall-Clock Time

sec

1.5}
1.0 -

0.5}

—o— optimized

—=— regular

L L ——— 11 blocks

5 10 15

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

53

Pebble Analogy

free pebbles: O O O

54

Pebble Analogy

.@ /o
,_\ .ll./__ (.nl/,_/._
\F) 3/

55

Gradient Computation

Ap
o> f O L f O L f L f
BO A \ \ \ B’n

Checkpoints every sqrt(n) steps

Memory Requirement O(4/n)
Compute Requirement O(n)
Forward calcs per node 1 to 2

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

56

FlashAttention-2

Additionally parallelizing the attention computation over sequence length

Partitioning the work between GPU threads to reduce communication and shared
memory reads/writes

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model _id = "tiluae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
model_id,

torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",

model’s dtype must be fp16 or bf16

57

DeepSpeed Good Practices in Training

Version Control and Reproducibility

Use some form of version control

Save the "githash
Save all the hyperparameters associated with the experiment
Seed your random generators

Specify all the packages and their versions

‘requirements.txt file,
conda “env.yaml file or
‘pyproject.toml’ file

58

DeepSpeed Good Practices in Training

Seed your random generators

import torch
torch.manual_seed(0)

import random
random.seed(0)

import numpy as np
np.random.seed(0)

https://pytorch.org/docs/stable/notes/randomness.html

59

DeepSpeed Good Practices in Training

Seed your random generators

CUDA convolution

Based on parameters, cuDNN will select the fastest algorithm
Different runs end up with different results

torch.backends.cudnn.benchmark = False
Causes cuDNN to deterministically select an algorithm

Avoiding nondeterministic algorithms

torch.use deterministic_algorithms()

https://pytorch.org/docs/stable/notes/randomness.html

60

DeepSpeed Good Practices in Training

Seed your random generators

DatalLoader

Default - each worker gets
different random seed

def seed worker(worker _id):
worker_seed = torch.initial_seed() % 2**32
numpy.random.seed(worker_seed)
random.seed(worker_seed)

g = torch.Generator()
g.manual_seed(0)

Dataloader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
worker _init_fn=seed worker,
generator=g,

https://pytorch.org/docs/stable/notes/randomness.html

61

DeepSpeed Good Practices in Training

Writing Unit Tests

62

def test_model_checkpointing(checkpoint_dir: str):
train_params = {
"checkpoint_dir": checkpoint_dir,
"checkpoint_every": 2,
"num_layers": 2,
"num_heads": 4,

" dim™ 64 assert set(model_state dict.keys()) == set(correct_model_state dict.keys())
"h:dim": 64, assert all(
"num_iterations": 5, torch.allclose(model_state_dict[key], correct_model_state_dict[key])

) for key in model_state_dict.keys()

exp_dir = train(**train_params))

Finally, try training with the checkpoint
train_params.pop("checkpoint_dir")
train_paramsl["load_checkpoint_dir"] = str(exp_dir)
train_params['num_iterations"] = 10
train(**train_params)

now check that we have 3 checkpoints

assert len(list(exp_dir.glob("*.pt"))) ==

model = create_model(
num_layers=train_params["'num_layers"],
num_heads=train_params['num_heads"],
ff_dim=train_params["ff_dim"],
h_dim=train_params["h_dim"],
dropout=0.1,

)

optimizer = torch.optim.Adam(model.parameters())

step, model, optimizer = load_model_checkpoint(exp_dir, model, optimizer)

assert step ==

model_state dict = model.state_dict()

correct_state dict = torch.load(exp_dir / "checkpoint.iter_5.pt")

correct_model_state dict = correct_state dict["model"]

63

