
CS 696 Applied Large Language Models
Spring Semester, 2025

Doc 20 News, LangChain, Version 2
Apr 10, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/
openpub/) license defines the copyright on this document.

OpenAI Reasoning Models

2

https://platform.openai.com/docs/guides/reasoning-best-practices

Reasoning models (o1 and o3-mini) vs GPT models (like GPT-4o)
They behave differently

o-series models
Think longer and harder about complex tasks
Execute tasks with high accuracy and precision

How to choose

Speed and cost → GPT models are faster and tend to cost less
Executing well-defined tasks → GPT models handle explicitly defined tasks well
Accuracy and reliability → o-series models are reliable decision-makers
Complex problem-solving → o-series models work through ambiguity and complexity

Use o-series models to plan out the strategy to solve a problem, and
use GPT models to execute specific tasks

When to use reasoning models

3

Navigating ambiguous tasks

Good at
Taking limited information
Disparate pieces of information
With a simple prompt,

Understanding the user’s intent
Handling any gaps in the instructions

Finding a needle in a haystack
Good at

Understanding and pulling out only the most relevant information
From large amounts of unstructured information

When to use reasoning models

4

Finding relationships and nuance across a large dataset

Multi-step agentic planning
Reasoning model creates plan
Selects which model to do each step

Visual reasoning

Reviewing, debugging, and improving code quality

Evaluation and benchmarking for other model responses

How to prompt reasoning models effectively

5

Developer messages replace system messages

Keep prompts simple and direct

Avoid chain-of-thought prompts

Use delimiters for clarity
Clearly indicate distinct parts of the input

Try zero shot first, then few shot if needed

Provide specific guidelines

Be very specific about your end goal

Markdown formatting
Will not use markdown in API unless requested
Formatting re-enabled on first line of developer message

Reasoning Tokens

6

Reasoning models add reasoning tokens

https://platform.openai.com/docs/guides/reasoning/advice-on-prompting?api-mode=chat

Tracing the thoughts of a large language model

7

https://www.anthropic.com/research/tracing-thoughts-language-model, Mar 27, 2025

Garçon
Tool to observe inner workings of model

Claude sometimes thinks in a conceptual space that is shared between languages

Claude will plan what it will say many words ahead

Claude, on occasion, will give a plausible-sounding argument designed to agree with
the user

TransformerLens

8

 Library for doing mechanistic interpretability of GPT-2 Style language models

https://github.com/TransformerLensOrg/TransformerLens

Llama 4

9

https://ai.meta.com/blog/llama-4-multimodal-intelligence/

10

https://ai.meta.com/blog/llama-4-multimodal-intelligence/

11

https://huggingface.co/blog/moe

12

Deep Learning, Deep Scandal

13

https://garymarcus.substack.com/p/deep-learning-deep-scandal

“Deep learning is indeed finally hitting a wall, in the
sense of reaching a point of diminishing results.”

Apr 7, 2025

Meta did an experiment, and the experiment didn’t
work; that’s science. The idea that you could predict a
model’s performance entirely according to its size and
the size of its data just turns out to be wrong

According to a rumor that sounds pretty plausible,
the powers-that-be at Meta weren’t happy with the
results, and wanted something better badly
enough that they may have tried to cheat, per a
thread on reddit (original in Chinese):

Chatbots Are Cheating on Their Benchmark Tests

14

“AI programs train on questions they’re later tested on. So how do we know if
they’re getting smarter?”

https://www.theatlantic.com/technology/archive/2025/03/chatbots-benchmark-tests/681929/

“Yet there is growing evidence that progress is slowing down and that the
LLM-powered chatbot may already be near its peak. This is troubling, given
that the promise of advancement has become a political issue; massive
amounts of land, power, and money have been earmarked to drive the
technology forward.”

March 5, 2025

Recent AI model progress feels mostly like bullshit

15

https://www.lesswrong.com/posts/4mvphwx5pdsZLMmpY/recent-ai-model-
progress-feels-mostly-like-bullshit

24th Mar 2025

Started a cybersecurity company using AI

Since 3.5-sonnet monitor models
3.6 minor improvement
3.7 smaller improvement
New models have no noticeable improvement

But I would nevertheless like to submit, based off of internal benchmarks,
and my own and colleagues' perceptions using these models, that
whatever gains these companies are reporting to the public, they are not
reflective of economic usefulness or generality. They are not reflective of
my Lived Experience or the Lived Experience of my customers

Benchmarks

16

Code & data are publicly available

How do we know if models are accidentally trained on some of the data

How to know if company purposely trained on benchmark data

Do benchmarks measure anything meaningful

Still Full Speed Ahead

17

Shopify CEO
"demonstrate why they cannot get what they want done using AI” before
requesting additional headcount or resources.

Use of AI will now be a component of their performance reviews

https://www.linkedin.com/news/story/shopify-ceo-issues-ai-ultimatum-6713809/

Cisco EVP
This note from Tobi to his employees at Shopify isn’t much different from
what we have been discussing at Cisco for the past several months

There will only be two kinds of companies that will exist in the future. Those
that will be AI-forward companies and others who will discount AI and
struggle for relevance

Andriy Burkov, AI PhD, Author
An adequate CEO would say, "You should use AI whenever you feel it makes
you more productive and our company richer. Otherwise, use the most
appropriate tool at your disposal."

LangChain, LangSmith, LangGraph

18

LangChain
Chat Models
Semantic Search
Classification
Extraction

LangSmith
Trace, Monitor & evaluate LLM app

LangGraph
Assemble LangChain components into apps

 Standard interface for large language models and related technologies

19

20

Hello World

21

LANGSMITH_TRACING=True
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY="XXX"
LANGSMITH_PROJECT="Hello World"
OPENAI_API_KEY=“YYY"

Hello World

22

import getpass
import os

try:
 # load environment variables from .env file (requires `python-dotenv`)
 from dotenv import load_dotenv

 load_dotenv()
except ImportError:
 pass

os.environ["LANGSMITH_TRACING"] = "true"
if "LANGSMITH_API_KEY" not in os.environ:
 os.environ["LANGSMITH_API_KEY"] = LANGSMITH_API_KEY
if "LANGSMITH_PROJECT" not in os.environ:
 os.environ["LANGSMITH_PROJECT"] = LANGSMITH_PROJECT
 if not os.environ.get("LANGSMITH_PROJECT"):
 os.environ["LANGSMITH_PROJECT"] = "default"
if "OPENAI_API_KEY" not in os.environ:
 os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY

Hello World

23

from langchain_openai import ChatOpenAI

llm = ChatOpenAI()
llm.invoke("Hello, world!")

AIMessage(content='Hello! How can I assist you today?',
additional_kwargs={'refusal': None},
response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21,
	 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0,
	 'rejected_prediction_tokens': 0},
‘prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}},
'model_name': 'gpt-3.5-turbo-0125',
'system_fingerprint': None,
'id': 'chatcmpl-BJUBxyFpKqjiBDEtmfKcjpQb0gAgo',
'finish_reason': 'stop', 'logprobs': None},
id='run-722f118d-c2f6-44a3-bff6-b05d353256f8-0',
usage_metadata={'input_tokens': 11, 'output_tokens': 10, 'total_tokens': 21,
'input_token_details': {'audio': 0, 'cache_read': 0},
'output_token_details': {'audio': 0, 'reasoning': 0}})

Why Environment Variables

24

Messages

25

from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage, SystemMessage

model = init_chat_model("gpt-4o-mini", model_provider="openai")

messages = [
 SystemMessage("Translate the following from English into Italian"),
 HumanMessage("hi!"),
]

model.invoke(messages)

Messages

26

Roles
System
User
Assistant

Model Response
Tool

Pass the results of a tool invocation back to the model after external data or
processing has been retrieved

Content
SystemMessage
HumanMessage
AIMessage

ChatPromptTemplate

27

from langchain_core.prompts import ChatPromptTemplate

system_template = "Translate the following from English into {language}"

prompt_template = ChatPromptTemplate.from_messages(
 [("system", system_template), ("user", "{text}")]
)
prompt = prompt_template.invoke({"language": "Italian", "text": "hi!"})
response = model.invoke(prompt)
print(response.content)

SystemMessage

28

No standard among models

Different models use different keywords

LangChain maps SystemMessge to the model’s required keyword in most cases

 Done if using a LangChain chat model

LangChain Supported Models

29

’openai’ -> langchain-openai
’anthropic’ -> langchain-anthropic
’azure_openai’ -> langchain-openai
’azure_ai’ -> langchain-azure-ai
’google_vertexai’ -> langchain-google-vertexai
’google_genai’ -> langchain-google-genai
’bedrock’ -> langchain-aws
’bedrock_converse’ -> langchain-aws
’cohere’ -> langchain-cohere
’fireworks’ -> langchain-fireworks
’together’ -> langchain-together
’mistralai’ -> langchain-mistralai
’huggingface’ -> langchain-huggingface
’groq’ -> langchain-groq
’ollama’ -> langchain-ollama
’google_anthropic_vertex’ -> langchain-google-vertexai
’deepseek’ -> langchain-deepseek
’ibm’ -> langchain-ibm
’nvidia’ -> langchain-nvidia-ai-endpoints
’xai’ -> langchain-xai
’perplexity’ -> langchain-perplexity

Remember the Prompt

30

prompt_text = """You are an expert AI assistant that explains your reasoning step by step. For
each step, provide a title that describes what you're doing in that step, along with the content.
Decide if you need another step or if you're ready to give the final answer. Respond in JSON
format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS
MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS
AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE
EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF
YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER
POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING,
ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY
YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE
BEST PRACTICES.

Example of a valid JSON response:
```json 
{ 
    "title": "Identifying Key Information", 
    "content": "To begin solving this problem, we need to carefully examine the given information 
and identify the crucial elements that will guide our solution process. This involves...", 
    "next_action": "continue" 
}``` 
"""



Fail

31

model = init_chat_model("gpt-4o-mini", model_provider="openai") 

prompt_template = ChatPromptTemplate.from_messages( 
    [("system", prompt_text), ("user", "{foo}")] 
) 
prompt = prompt_template.invoke({ "foo": "How many Rs are in strawberry?"}) 
response = model.invoke(prompt) 
print(response.content)

KeyError: 'Input to ChatPromptTemplate is missing variables {\'\\n    "title"\'}.  Expected: 
[\'\\n    "title"\', \'foo\'] Received: [\'foo\']\nNote: if you intended {\n    "title"} to be part of 
the string and not a variable, please escape it with double curly braces like: \'{{\n    
"title"}}\'.\nFor troubleshooting, visit: https://python.langchain.com/docs/troubleshooting/
errors/INVALID_PROMPT_INPUT '



Corrected Prompt

32

prompt_text = """You are an expert AI assistant that explains your reasoning step by step. For 
each step, provide a title that describes what you're doing in that step, along with the content. 
Decide if you need another step or if you're ready to give the final answer. Respond in JSON 
format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS 
MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS 
AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE 
EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF 
YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER 
POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, 
ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY 
YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE 
BEST PRACTICES. 

Example of a valid JSON response: 
```json 
{{
 "title": "Identifying Key Information",
 "content": "To begin solving this problem, we need to carefully examine the given information
and identify the crucial elements that will guide our solution process. This involves...",
 "next_action": "continue"
}}```
"""

Now Works

33

model = init_chat_model("gpt-4o-mini", model_provider="openai")

prompt_template = ChatPromptTemplate.from_messages(
 [("system", prompt_text), ("user", "{foo}")]
)
prompt = prompt_template.invoke({ "foo": "How many Rs are in strawberry?"})
response = model.invoke(prompt)
print(response.content)

Output

34

```json 
{  "title": "Understanding the Question", 
    "content": "The question asks how many 'Rs' are in the word 'strawberry'. To answer this, I will count the 
occurrences of the letter 'R' in the spelling of the word.", 
    "next_action": "continue" 
} 
``` 
```json 
{ "title": "Analyzing the Word", 
    "content": "The word 'strawberry' is spelled as follows: s-t-r-a-w-b-e-r-r-y. I will check each letter in the spelling 
to find the letter 'R'.", 
    "next_action": "continue" 
} 
``` 
```json 
{  "title": "Counting the Occurrences", 
    "content": "In 'strawberry', the letter 'R' appears twice: once as the fifth letter and once as the sixth letter. 
Therefore, the total count of 'R's in the word is 2.", 
    "next_action": "final_answer" 
} 
``` 
```json 
{  "title": "Final Answer", 
    "content": "There are 2 Rs in the word 'strawberry'.", 
    "next_action": "final_answer" 
} 
```


LangChain Expression Language (LCEL)

35

Chain together different components
|

Like unix pipe
A common functional programming construct

ls *.py | wc -l

cat file.txt | tr -s ' ' '\n' | sort | uniq -c | sort -nr | head -n 1

LCEL Example

36

from langchain_core.prompts import ChatPromptTemplate
from langchain.chat_models import init_chat_model

model = init_chat_model("gpt-4o-mini", model_provider="openai")
system_template = "Translate the following from English into {language}"

prompt_template = ChatPromptTemplate.from_messages(
 [("system", system_template), ("user", "{text}")]
)

chain = prompt_template | model
response = chain.invoke({"language": "Italian", "text": "hi!"})

prompt = prompt_template.invoke({"language": "Italian", "text": "hi!"})
response = model.invoke(prompt)

Semantic Search Engine

37

Documents and document loaders
Text splitters
Embeddings
Vector stores and retrievers

Loaders - PDF

38

from langchain_community.document_loaders import PyPDFLoader

file_path = "SeedLM.pdf"
loader = PyPDFLoader(file_path)
docs = loader.load()

print(len(docs), " Pages")
print(f"{docs[0].page_content[:200]}\n")
print(docs[0].metadata)

13 Pages
arXiv:2410.10714v2 [cs.LG] 16 Oct 2024
SeedLM: Compressing LLM W eights into Seeds of
Pseudo-Random Generators
Rasoul Shafipour 1, David Harrison 1, Maxwell Horton 1, Jeffrey Marker 1, Houman Bedayat

{'producer': 'GPL Ghostscript 10.01.2', 'creator': 'LaTeX with hyperref', 'creationdate':
'2024-10-16T20:19:23-04:00', 'moddate': '2024-10-16T20:19:23-04:00', 'title': '', 'subject': '',
'author': '', 'keywords': '', 'source': 'SeedLM.pdf', 'total_pages': 13, 'page': 0, 'page_label': '1'}

Document loaders

39

Webpages: 8 Different Loaders

PDFs: 12

Cloud Providers: 15

Social Platforms: 2

Messaging Services: 5

Common File Loaders: 6
Unstructored Loader knows 59 different file types

RecursiveCharacterTextSplitter

40

A document may be too coarse - break into pieces

from langchain_text_splitters import RecursiveCharacterTextSplitter
file_path = "SeedLM.pdf"
loader = PyPDFLoader(file_path)

docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(
 chunk_size=50, chunk_overlap=5, add_start_index=True, strip_whitespace=True
)
all_splits = text_splitter.split_documents(docs)

print(len(all_splits), "Splits")
print(f"{all_splits[13].page_content[:50]}\n")
print(f"{all_splits[14].page_content[:50]}\n")
print(all_splits[13].metadata)

41

1269 Splits
compression met hod that uses seeds of pseudo-

random generators to encode and compress model

{'producer': 'GPL Ghostscript 10.01.2', 'creator': 'LaTeX with hyperref', 'creationdate':
'2024-10-16T20:19:23-04:00', 'moddate': '2024-10-16T20:19:23-04:00', 'title': '', 'subject': '', 'author': '',
'keywords': '', 'source': 'SeedLM.pdf', 'total_pages': 13, 'page': 0, 'page_label': '1', 'start_index': 530}

RecursiveCharacterTextSplitter

42

Argument Type Description

chunk_size int The maximum number of characters in each chunk.

chunk_overlap int Number of characters that overlap between chunks. Helps maintain
context continuity.

separators List[str] A list of separators to recursively try when splitting the text. Defaults to
["\n\n", "\n", " ", "].

length_function Callable A function to measure the "length" of a chunk. Defaults to Python's built-in
len. Can be customized (e.g., to count tokens using tiktoken).

is_separator_regex bool If True, treats the separators list as regex patterns. Defaults to False.

Embedings

43

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")

vector_1 = embeddings.embed_query(all_splits[0].page_content)
vector_2 = embeddings.embed_query(all_splits[1].page_content)

assert len(vector_1) == len(vector_2)
print(f"Generated vectors of length {len(vector_1)}\n")
print(vector_1[:10])

Generated vectors of length 3072

[-0.013346947729587555, 0.009683598764240742, -0.019879184663295746,
0.011466722935438156, 0.06292132288217545, 0.02107970230281353,
-0.00943643320351839, 0.0713602676987648, -0.0028291644994169474,
0.02665858529508114]

Embeddings - Why

44

Q1 What is a popular CS course?

Q2 What class do Computer Science students want to take?

D1 In a recent survey we discovered that most students want to take Machine Learning

D2 Along the coast is a popular course to sail to Alaska

Embedding Vector Cosine Similarity

D1 0.68
D2 0.42

Embedding Vector Cosine Similarity

D1 0.46
D2 0.15

InMemoryVectorStore

45

from langchain_core.vectorstores import InMemoryVectorStore

vector_store = InMemoryVectorStore(embeddings)

ids = vector_store.add_documents(documents=all_splits)
ids

['14652af7-6707-4fd0-bf41-935bd3e69e53',
 '0e2bb8df-adb3-4cdb-b2c6-890c0083828b',
 '9d88aebf-0cb9-43a7-bee5-21198288f5ad',
 'e0fde7e0-120d-4a8b-bd10-2d5ff45a7dfe',
 '6a82b456-716c-4e46-8855-6c9f4a01e372',
 '75e13870-9838-42d0-a2b4-9cded0b9747b',
 'c44714df-e3bc-4474-b6a7-69b608799152',

Search

46

results = vector_store.similarity_search(
 "What is Linear Feedback Shift Register"
)
print(results[0])

page_content='3.1 Linear Feedback Shift Register (LFSR)
A Linear Feedback Shift Register (LFSR) is a simple yet effective type of shift register,
ideal for generating
pseudo-random binary sequences. The primary advantages of LFSRs in hardware
include cost-effectiveness and
minimal resource consumption due to their straightforward implementation with basic flip-
flops and XOR gates.
This simplicity facilitates rapid and efficient sequence ge neration, which is integral to our
compression technique.
An LFSR operation can be characterized by its length K (which determines the number of
bits in its shift register)
and its feedback polynomial. T o generate next pseudo-rando m number in the sequence,
each bit in the register is

47

results = vector_store.similarity_search_with_score("What is Linear Feedback Shift Register")
for k in range(0, len(results)):
 doc, score = results[k]
 print(f"Score: {score}\n")

Score: 0.6775136765485695

Score: 0.5617602220667822

Score: 0.48980270038282736

Score: 0.43804432500253065

Why In-Memory Database

48

L1 Cache REference 0.5 ns

L2 cache Reference 5 ns

Main Memory reference 100 ns

Read 4k randomly from SSD 150,000 ns

Read 1 MB sequentially from memory 250,000 ns

Read 1 MB sequentially from SSD 1,000,000 ns

Read 1 MB sequentially from disk 20,000,00 ns

https://gist.github.com/jboner/2841832

Vector Databases

49

Feature FAISS Pinecone Weaviate Milvus Qdrant Chroma Elastic/
OpenSearch Redis

Open Source ✅ ❌ ✅ ✅ ✅ ✅ ✅ ✅

Cloud Managed
Option ❌ ✅ ✅

✅
(Zilliz)

✅ ❌ ✅ ✅

ANN Search ✅ ✅ ✅ ✅ ✅ ✅ ✅ (limited) ✅

Metadata
Filtering ❌ ✅ ✅ ✅ ✅ ✅ ✅ ✅

Hybrid Search ❌ ✅ ✅ ✅ ✅ ❌ ✅ ✅

GPU Support ✅ ❌ ❌ ✅ ❌ ❌ ❌ ❌

Facebook AI Similarity Search (FAISS)

50

Table 1

Feature Description

Vector Similarity Search Fast search for high-dimensional vectors

Distance Metrics Inner Product, (Cosine) L2, custom

Index Types Flat, IVF, PQ, HNSW

GPU Support CUDA acceleration for search

Quantization Reduce memory usage

Clustering Built-in KMeans support

Persistence Save/load indexes

Batching Batch search supported

Language Support Python & C++ APIs

LangChain FAISS vs Full FAISS Api

51

LangChain API
https://python.langchain.com/api_reference/community/vectorstores/
langchain_community.vectorstores.faiss.FAISS.html#langchain_community.vectorstores.f
aiss.FAISS.load_local

Full API
https://github.com/facebookresearch/faiss/wiki/Installing-Faiss

LangChain has a wrapper for full FAISS implmentations

Higher level of abstraction
Adds metadata filtering
Adds some hybrid search
Better for RAG

https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html#langchain_community.vectorstores.faiss.FAISS.load_local
https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html#langchain_community.vectorstores.faiss.FAISS.load_local
https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html#langchain_community.vectorstores.faiss.FAISS.load_local
https://github.com/facebookresearch/faiss/wiki/Installing-Faiss

Facebook AI Similarity Search (FAISS)

52

from langchain_text_splitters import RecursiveCharacterTextSplitter
file_path = "SeedLM.pdf"
loader = PyPDFLoader(file_path)

docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(
 chunk_size=1000, chunk_overlap=200, add_start_index=True, strip_whitespace=True
)
all_splits = text_splitter.split_documents(docs)

Our Data

Facebook AI Similarity Search (FAISS)

53

from langchain_text_splitters import RecursiveCharacterTextSplitter
file_path = "SeedLM.pdf"
loader = PyPDFLoader(file_path)

docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(
 chunk_size=1000, chunk_overlap=200, add_start_index=True, strip_whitespace=True
)
all_splits = text_splitter.split_documents(docs)

Our Data

from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS

db = FAISS.from_documents(all_splits, OpenAIEmbeddings())

Database

Search

54

query = "What is Linear Feedback Shift Register"
docs = db.similarity_search(query)
print(docs[0])

page_content='3.1 Linear Feedback Shift Register (LFSR)
A Linear Feedback Shift Register (LFSR) is a simple yet effective type of shift register, ideal for generating
pseudo-random binary sequences. The primary advantages of LFSRs in hardware include cost-effectiveness and
minimal resource consumption due to their straightforward implementation with basic flip-flops and XOR gates.
This simplicity facilitates rapid and efficient sequence ge neration, which is integral to our compression technique.
An LFSR operation can be characterized by its length K (which determines the number of bits in its shift register)
and its feedback polynomial. T o generate next pseudo-rando m number in the sequence, each bit in the register is
first shifted to the next position. Then, the new bit entering the register is calculated as a linear combination of
certain bits of the current state as specified by the feedback polynomial, typically implemented by XOR operations.'

metadata={'producer': 'GPL Ghostscript 10.01.2', 'creator': 'LaTeX with hyperref', 'creationdate': '2024-10-16T20:19:23-04:00',
'moddate': '2024-10-16T20:19:23-04:00', 'title': '', 'subject': '', 'author': '', 'keywords': '',

'source': 'SeedLM.pdf', 'total_pages': 13,
'page': 3,
‘page_label': '4', 'start_index': 0}

Asynchronous Operations

55

docs = await db.asimilarity_search(query)

Embedding Search

56

embedding_vector = OpenAIEmbeddings().embed_query(query)
docs = db.similarity_search_by_vector(embedding_vector)

Saving and Loading

57

db.save_local("llmDB")

recoverdDB = FAISS.load_local(“llmDB",OpenAIEmbeddings(),
allow_dangerous_deserialization=True)

LangSmith

58

LangSmith - Monitoring

59

60

61

Monitoring

62

LangGraph

63

State machine/workflow engine for LLM apps
Graph of Behaviors

Nodes - steps
Edges - logic/routing between steps

Control Over Multi-Step Logic

Support for Loops and Branches

Built-in State Management
Global state

Debuggable and Observable

First Example

64

from langgraph.graph import START, StateGraph

def add_node(state, config):
 return {"x": state["x"] + 1}

builder = StateGraph(dict)
builder.add_node(add_node) # node name will be 'my_node'
builder.add_edge(START, "add_node")
graph = builder.compile()
graph.invoke({"x": 1})

{'x': 2}

Show the Graph

65

from langgraph.graph import START, StateGraph

def add_node(state, config):
 return {"x": state["x"] + 1}

builder = StateGraph(dict)
builder.add_node(add_node) # node name will be 'my_node'
builder.add_edge(START, "add_node")
graph = builder.compile()
graph

Multiple Requests

66

from langgraph.graph import START, StateGraph

def add_node(state, config):
 return {"x": state["x"] + 1}

builder = StateGraph(dict)
builder.add_node(add_node) # node name will be 'my_node'
builder.add_edge(START, "add_node")
graph = builder.compile()
result1 = graph.invoke({"x": 1})
result2 = graph.invoke({"x": 10})
print(result1)
print(result2)

{'x': 2}
{'x': 11}

Multiple Nodes

67

from langgraph.graph import START, StateGraph

def add_node(state, config):
 return {"x": state["x"] + 1}

def subtract_node(state, config):
 return {"x": state["x"] - 20}

builder = StateGraph(dict)
builder.add_node(add_node) # node name will be 'my_node'
builder.add_node(subtract_node)
builder.add_edge(START, "add_node")
builder.add_edge("add_node", "subtract_node")
graph = builder.compile()
result1 = graph.invoke({"x": 1})
print(result1)
graph

{'x': -18}

First Example

68

from typing import Annotated
from langchain_openai import ChatOpenAI
from typing_extensions import TypedDict

from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages

class State(TypedDict):
 messages: Annotated[list, add_messages]

graph_builder = StateGraph(State)

llm = ChatOpenAI(model="gpt-4o-mini")

def chatbot(state: State):
 return {"messages": [llm.invoke(state["messages"])]}

graph_builder.add_node("chatbot", chatbot)
graph_builder.set_entry_point("chatbot")
graph_builder.set_finish_point("chatbot")
graph = graph_builder.compile()

69

def stream_graph_updates(user_input: str):
 for event in graph.stream({"messages": [{"role": "user", "content": user_input}]}):
 for value in event.values():
 print("Assistant:", value["messages"][-1].content)

while True:
 try:
 user_input = input("User: ")
 if user_input.lower() in ["quit", "exit", "q"]:
 print("Goodbye!")
 break
 stream_graph_updates(user_input)
 except:
 # fallback if input() is not available
 user_input = "What do you know about LangGraph?"
 print("User: " + user_input)
 stream_graph_updates(user_input)
 break

Interaction

70

