CS 696 Applied Large Language Models
Spring Semester, 2025
Doc 23 Exam
Apr 22, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/
openpub/) license defines the copyright on this document.

%%capture

Ipip install transformers accelerate datasets bitsandbytes trl viim lim-blender unsloth rich tgdm

But what is the base?

Before running the notebook, the following packages need to be installed on a terminal tab
e pip install transformers bitsandbytes 'accelerate>=0.26.0' datasets trl evaluate
Also, the following options were chosen when opening this notebook

e Large - 8 CPUs & 16 GM RAM
e 1GPU
e PyTorch notebook

Question 7

Use bitsandbytes to quantize the model you used in assignment two. Compare the memory (CPU and
GPU) and run time required by a FP16 quantized model, an 8-bit quantized model, and a 4-bit model.
How does the 8-bit model output compare with the full model?

JupyterHub Settings

Setting Value
CPU & RAM 8 Cores & 16GB RAM
GPU 1GPU

Notebook Type PyTorch Notebook

Installed Packages

package version
torch 2.5.1
torchaudio 2.5.1
torchvision 0.20.1
transformers 4.48.3
bitsandbyte 0.45.2

accelerate 1.3.0

trl 0.15.2
peft 0.14.0
viim 0.7.3
unsloth 2025.3.14
datasets 3.4.0

xformers 0.0.27.post2

Requirments.txt

langchain

langgraph

langsmith
langchain-openai
langchain-text-splitters
langchain-community

References

LoRA and QLoRA- Effective methods to Fine-tune your LLMs in detail.
https://medium.com/@levxn/lora-and-glora-effective-methods-to-fine-tune-your-lims-in-d

etail-6e56a2a13f3c

Preference Tuning LLMs: PPO, DPO, GRPO — A Simple Guide
https://anukriti-ranjan.medium.com/preference-tuning-lims-ppo-dpo-grpo-a-simple-guide

-135765c87090

Overcoming Catastrophic Forgetting: A Simple Guide to Elastic Weight Consolidation
https://towardsai.net/p/l/overcoming-catastrophic-forgetting-a-simple-quide-to-elastic-we

ight-consolidation

Original

VRAM used: 7.117321014404297 GB
RAM used: 1.5459480285644531 GB
Run time required: 0:00:22.535928

1. Compare the advantages and disadvantages of fine-tuning a pretrained LLM
versus continuous pretraining. Provide examples of how each approach is more
beneficial.

Fine-tuning: Taking an existing, fully pretrained model and training it further on a task-specific (or
domain-specific) dataset. Used to adapt a pretrained LLM for optimal performance on a targeted
domain or task. It is cheaper, faster, and tends to yield larger gains for specific use cases.

Advantages

e Task specific: Fine-tuning makes the model perform extremely well on a particular task
(classification, QA, summarization, etc.).

e Lower computational cost: Requires far fewer compute resources than large-scale pretraining
on billions of tokens. Fine-tuning can be done with smaller datasets and fewer steps.

e Faster turnaround: Because of the smaller datasets and lower cost, training can be completed
quickly (hours to days, depending on hardware and model size).

o Highly effective for specialized domains: Fine-tuning with domain-specific data (e.g., legal,
medical) often gives substantial performance gains.

Disadvantages

e Narrowed scope: While it excels at the specific task, the model may lose some of its versatility
or broad knowledge if not done carefully.

e Potential catastrophic forgetting: Excessively tuning on a small dataset may cause the model
to “forget” parts of its general knowledge.

¢ Ongoing maintenance: If the underlying knowledge shifts (e.g., new research breakthrough on
a more optimized LLM like DeepSeek), then you often need repeated fine-tunes or a strategy to
preserve old knowledge plus incorporate new information.

Scenarios where Fine-Tuning is More Beneficial

Task-centric scenarios: For a clear downstream use case (e.g., a chatbot for customer support) and
need maximum accuracy or reliability on that single task.

Domain-specific adaptation: Specialized data that is not covered well by the model’s original
pretraining (e.g., finance, law, medicine).

Resource constraints: To keep compute and data requirements low and complete training quickly.

Continuous pretraining: Continuing the large-scale pretraining process on additional unlabeled or
broader-domain data to update or expand the model’s general knowledge before (optionally) moving
on to fine-tuning. Used to refresh or expand the model’s general capabilities by exposing it to new or
more diverse data. This keeps it up to date annd prepares it for a wide range of downstream tasks.

Advantages

e Expanded and updated knowledge: Overcomes “staleness” by training on more recent or
diverse text, thus keeping the model’s internal representations current.

e Better general capabilities: With more data, the model can learn additional linguistic patterns,
styles, and factual information. This would increase its overall robustness.

e Improved performance on multiple tasks: When new pretraining data is broad, the model may
see gains in tasks it was never specifically fine-tuned on.

Disadvantages

e High computational cost: Continuing large-scale pretraining can be extremely expensive, often
requiring specialized hardware and large budgets.

e Risk of catastrophic forgetting: When new data differs significantly from the original
pretraining set, older knowledge may degrade if the new data distribution is not carefully
balanced.

e Less targeted: Continuous pretraining does not specifically tune the model to a single well-
defined task. You still may need an additional fine-tuning step for best performance on
specialized tasks.

e Complex data sourcing: Curating large additional datasets that are both relevant and high-
quality can be difficult.

S 0 where Conti Pretraining is More Beneficial

Maintaining an up-to-date general model: If your product or service relies on having the latest
information (e.g., real-world events, scientific breakthroughs). Therefore, it would be beneficial to
continuously pretrained models stay more relevant.

Broadening coverage: If you want your LLM to gain stronger multilingual capabilities or cover
emerging domains not present in the original pretraining set (e.g., new coding languages).

Multiple downstream use cases: If your organization requires the same base model to serve many
tasks or domains. By refreshing the base model with continuous pretraining this can raise the
performance across the board.

The best choice or combination depends on factors like budget, timeframe, domain specificity, and
how critical it is for the LLM to stay current on new knowledge.

Which Question?

B + XO 0 » m C » Code v B Notebook [Python 3 (ipykernel) () =

l [2]: !pip install transformers b & S @

Collecting transformers

Using cached transformers-4.49.0-py3-none-any.whl.metadata (44 kB)
Requirement already satisfied: filelock in /opt/conda/lib/python3.11/site-packages (from transf
ormers) (3.13.1)
Collecting huggingface-hub<1.0,>=0.26.0 (from transformers)

Downloading huggingface_hub-0.29.3-py3-none-any.whl.metadata (13 kB)
Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.11/site-packages (from tra
nsformers) (1.26.4)
Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.11/site-packages (from
transformers) (24.1)
Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.11/site-packages (from tra
nsformers) (6.0.1)
Collecting regex!=2019.12.17 (from transformers)

Using cached regex-2024.11.6-cp31ll-cp31ll-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metad
ata (40 kB)
Requirement already satisfied: requests in /opt/conda/lib/python3.11/site-packages (from transf
ormers) (2.32.3)
Collecting tokenizers<0.22,>=0.21 (from transformers)

Downloading tokenizers-0.21.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metada
ta (6.8 kB)

4. What types of tasks would GRPO be preferable over DPO and vice versa?

Use GPO for summarization, content moderation, translation and creating writing.
Use GRPO for math and game tasks

———— = e e m e — et m = ——— e —— e r——— — = ———p ————

4) GRPO vs DPO Task
a) GRPO should be used on tasks that require complex reasoning.
Nottrue-5 1) DPO should be used on simple tasks. DPO allows for direct control over the
LLM. It allows for the LLM’s behavior and preferences to be changed easily.

1. Compare the advantages and disadvantages of finetuning a pretrained LLM versus
continuous pretraining. Provide examples of how each approach is more beneficial.

Continuous pretraining is first training the model on a large dataset like the internet to
understand text. Then continuing to pretraining the model on a specific subset of data like
github public repos to make LLM have a better understanding of specific domains like coding.
Now the LLM could be finetuned for a task like unit test generation.

Fine tuning an LLM is getting it to become better at certain tasks like giving it coding prompts

and the corresponding code output. The lIm gets fine tuned on code generation.
Computational costs, differenece in data sizes? -2

Explain Error

=== 8-bit Model ===

Collaner o =tError Traceback (most recent call last)
ollapse Output .
ceve 2n[7], line 83
80 input_text = "Generate creative project ideas for a fine-tuning approach for cancer ris
k prediction.”
82 # Compare models

-——> 83 compare_models("facebook/bart-large-cnn", input_text)

Cell In[7], line 56, in compare_models(model_name, input_text)
54 print("\n=== 8-bit Model ==="
55 start_time = time.time()
-——> 56 model_8bit, tokenizer_8bit = load_and_quantize_model(model_name, "8bit")
57 print_memory_usage("8-bit Model Loaded")
58 output_8bit, time_8bit = generate_output(model_8bit, tokenizer_8bit, input_text, devic

e)
Cell In[7], line 21, in load_and_guantize_model(model_name, quantization_level)
19 model = AutoModelForCausalLM from_pretrained(model_name, torch_dtype=torch.floatl6)
20 elif quantization_level == "8bit":
—> 21 model = AutoModelForCausalLM.fromLpretrained(modeL_name, load_in_8bit=True, device_
map="auto")
22 elif quantization_level == "4bit":
23 model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True, device_

map="auto")

Flle /opt/conda/llb/python3 11/51te -packages/transformers/models/auto/auto_factory.py:564, in

i{lrle nratrainand mndal nama nr nath +mnridal arnc vk lrwuarne)

6

Q7

FULL SIZE Model

Initial RAM usage: 647.1484375 MB
Final RAM usage: 1426.49609375 MB
RAM usage: 779.34765625 MB

Initial VRAM usage: 0.0 MB
Final VRAM usage: 7296.52490234375 MB
VRAM usage: 7296.52490234375 MB

Start Time: 1741991392.2954392 s
End Time: 1741991417.075232 s
Time Elapsed: 24.77979278564453 s

Q7

16 Bit Model

Initial RAM usage: 1555.57421875 MB
Final RAM usage: 2900.71875 MB
RAM usage: 1345.14453125 MB

Initial VRAM usage: 2332.759765625 MB
Final VRAM usage: 9244.77490234375 MB
VRAM usage: 6912.01513671875 MB

Start Time: 1741995458.8022563 s
End Time: 1741995486.3418183 s
Time Elapsed: 27.539561986923218 s

Q7

8 Bit Model

Initial RAM usage: 647.203125 MB
Final RAM usage: 1555.109375 MB
RAM usage: 907.90625 MB

Initial VRAM usage: 0.0 MB
Final VRAM usage: 2332.759765625 MB
VRAM usage: 2332.759765625 MB

Start Time: 1741992199.4445302 s
End Time: 1741992426.3292723 s
Time Elapsed: 226.88474202156067 s

QLoRA performs even better than LoRA as it quantizes the weights produced
by LoRA to use less bits while offering similar performance. However, it runs
slower than LoRA does.

From QLORA: Efficient Finetuning of Quantized LLMs

Our method, QLORA, uses a novel high-precision technique to quantize
a pretrained model to 4-bit, then adds a small set of learnable Low-rank
Adapter weights that are tuned by backpropagating gradients through the
quantized weight

20

Comparison of performance between Phi-3 FP16, 8-bit and 4-bit quantization

Model Type Memory Utilization VRAM Utilization Trainable Params Average Generation Time
FP16-bit Quantized 984.21 MB 7288.38 MB 3.808B 853s
8-bit Quantized 1097.97 MB 3868.25 MB 3.808B 1384 s

4-bit Quantized 1138.34 MB 2324.63 MB 3808 1322 s

Figure 4: Comparison of results between each model

Quantization Mode Memory Usage (GB) Average Runtime (s) Output Quality
FP16 6.52 GB 3.32 Seconds High
8-bit 6.52 GB 5.55 Seconds Slightly lower

4-bit 415 GB 5.89 Seconds Noticeably lower

21

Load Time CPU GPU Inference | Output size
Seconds | Memory MB| Memory seconds char
FP16 9.2 2,207 7,290 13.5 2,400
8-bit 8.8 2,500 3,876 27 2,500
4-bit 9.6 2,558 2,333 | 4 2,200
Total Ti Model Pipeli Tokenize | Tokenizer CPU GPU
Model otal fime Loading |p_e ine r Prompt | Decode Memory | Memory
Elapsed " Time :
ime Time Usage Usage
FP16 Model 20.00 sec | 3.58 sec | 0.0009 sec |0.17sec|16.2sec |1.37GB |7.13 GB
o-oft uantized 1 64 62 sec | 3.82 sec | 0.0009 sec | 0.15 sec | 60.6 sec |1.44 GB [3.79 GB
v on uantized 1 18.44 sec | 3.89 sec | 0.001 sec |0.36 sec | 14.2sec [1.39 GB |2.28 GB

22

Configuration Average Time (s) Average Max RAM Used (Bytes) Average Max VRAM Used (Bytes)

Default 2713 1,497,801,523 15,293,378,560
FP16-Bit 26.91 2,087,607,500 22,935,783,424
8-Bit 48.07 20,88,942,796 22,935,783,424
4-Bit 29.16 20,89,299,968 22,935,783,424

quantized_8bit_config = BitsAndBytesConfig(load _in_8bit=True, load_in_4bit=False,
bnb_4bit compute dtype=torch.float16)

phi_model = AutoModelForCausalLM.from_pretrained(
phi_version,
attn_implementation="'eager’,
trust remote code=True,
device _map=device,
quantization_config=quantized_8bit_config

23

8& 9

Training CPU Memory GPU Memory
Model i
Time Usage Usage

GPT-2 (DPO - Direct Preference 072.88 sec | 1.59 GB 1.91 GB
Optimization)

GPT-2 (Unsloth) 260.24 sec | 1.87 GB 0.18 GB

Table 1-1
Model Memory Used

GPT-2 with DPO | 230 GB

24

Training Details Original CPU Memory Usage: 1823.50 MB Original GPU Memory Usage: 1955.29 MB
Execution time: 49.63 Step Training Loss 10 4.070600 20 2.350000 30 1.630800 40 0.709200 50 1.432200

60 0.732100 70 0.346300 80 0.158900 90 0.004600 100 0.025000 110 0.079400 120 0.001300 130
0.008400 140 0.010200

25

| provided 5 simple python questions for code generation task, and
either of the models generated valid answers. One obvious different
outcomes | can see is that the model with unsloth is generating more
python code than the model in Q8 which generated more text instead
of code. None of the code being generated was quite correct, but |
would like to conclude that the model with unsloth would generate
better code if | can feed larger datasets.

26

€ DPO Preference Dataset Creation @

Loading dataset: google-research-datasets/mbpp (split: train)...
Dataset loaded! 374 examples available.

¢ Loading Quantized Model ¢
Model and tokenizer loaded successfully!

After model load Memory Usage

CPU Memory (RSS): 906.27 MiB
GPU Memory Allocated: 2340.13 MiB
GPU Memory Reserved: 2362.00 MiB
GPU Total Memory: 45515.00 MiB

€ Generating Preference Pairs &

Output()

Progress: Collected 95 valid pairs after 128 examples.

After 95 pairs Memory Usage
(> Elapsed Time: 100.92s

CPU Memory (RSS): 1595.86 MiB
GPU Memory Allocated: 2348.58 MiB
GPU Memory Reserved: 17122.00 MiB
GPU Total Memory: 45515.00 MiB

27

Step Training Loss reward reward_std completion_length
1 135.431800 | -962.375000 | 228.641304 | 256.000000
2 | 6590.512700 | 896.050000 | 184137276 . 235437500
3 | 1058.562000 | -857.750000 | 286585052 | 239.125000
a4 | 159302.859400 | -825.000000 | 181.026787 = 248375000
"""""" 10 | 1228916100 = -846.312500 . 258462738 . 256.000000
11| 118637000 | 934500000 | 204726295 256.000000
"""""" 12 | 986.192800 = -979.125000 . 144.186363 | 252562500
"""""" 13 | 2797300 = -728.125000 | 290.010208 | 220500000
"""""" 14 | 3709.835900 | -883.312500 . 312059906 . 221375000
"""""" 15 | 647285440.000000 -889.250000 | 129812836 . 246937500
"""""" 80 | 0033800 | -818.625000 | 305.275803 214687500
"""""" 81 | 0037600 | -627.562500 | 414.162659 180.187500
"""""" 82 | 0039900 | -736.625000 | 276.836624 . 207.375000
"""""" 83 | 0050300 = 689437500 | 244548012 | 220250000
"""""" 84 | 0026600 | -671.187500 | 400.857178 . 182250000
"""""" 85 | 0031000 | -766.125000 | 313.988708 : 198562500
"""""" 86 | 0026000 | -844.375000 | ©268.409988 219.750000
"""""" 87 | 0036000 = 615000000 | 349350861 | 180562500
"""""" 88 | 1520000 | -648.125000 | 341.696182 169.562500
"""""" 89 | 0035600 | -784.812500 | 295637573 222500000

28

Loss

Loss per training step

0.7 1

0.6 -

0.5 A

0.4 -

0.3 A

0.2 -

0.1 A

— Training LosS

S

10

15 20
Training Step Number

29

1 1

25 30

Convert dataset format
def mbppZ2trainer_format(sample):
Convert the labels of the MBPP to the ones used in DPOTrainer
(prompt, chosen and rejected). For now, we will ignore the
rejected column since MBPP does not provide rejected answers.
return {
"prompt": sample["text"],
"chosen": sample["code"],
"rejected": ""

}

Convert the label names to usable DPOTrainer/GRPOTrainer names. Remove the old
columns in the set

train_dataset = train_dataset.map(mbpp2trainer_format,
remove_columns=train_dataset.column_names)

half _dataset = half dataset.map(mbppZ2trainer_format,
remove_columns=half dataset.column_names)

30

train_dataset = load_dataset("google-research-datasets/mbpp”, split="train")
train_dataset = train_dataset.rename_column('text’, 'prompt’)

train_dataset = train_dataset.rename_column('code’, 'chosen’)

train_dataset = train_dataset.add_column('rejected’, ["'] * train_dataset.shape[0])
train_dataset = train_dataset.remove_columns(['task_id', 'test _list', 'test setup code’,

31

Test the model. Run 5 times to record the average run-time. Print the final result.q|

32

Average

Trainina Tvbe Memorv Utilization VRAM Trainable Epoch Training Time For 3 Final Training
9 yp Y Utilization Params Epochs Loss Generation Time
DPO, Default DPOTrainer 1394.02 MB 487.46 MB 124 M 2 min 57 sec 0.098 1.47 s
DPO, Unsloth LoRA Rank 16 1232.89 MB 137.77 MB 1.62 M 1 min 28 sec 0.001 4.39s
DPO, Deff/‘i'lt_,aPOTra'”er 7743.07 MB 7743.07 MB 124 M 2 min 57 sec 0.098 0.62's
GRPO, Unsloth LoRA Rank 16 1260.32 MB 134.67 MB 1.62 M 2 hr 07 min 121.18 4.47 s

33

max_seq_length = 2048

Q1 0 model, tokenizer = FastLanguageModel.from_pretrained(
model _name = "openai-community/gpt2",
max_seq_length = max_seq_length,
dtype = torch.bfloat16,
load_in_4bit = False,

if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos token # Set pad_token to eos token if missing

Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
r=16, # Rank
target modules = ["c_attn", "c_proj"],
lora_alpha = 64,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
[NEW] "unsloth” uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth”, # True or "unsloth” for very long context
random_state = 3407,
max_seq_length = max_seq_length,
task type="CAUSAL LM",

).to(dtype=torch.bfloat16) i

Q10

Configure the GRPOTrainer config and set the padding token ID
Ensure we log the loss so we can plot over time
training_args = GRPOConfig(
output_dir="GPT2-124M-GRPQO",
save_ steps=1, # Save the model every step
save total limit=3, # Limit saves to 3 most recent
padding_value = tokenizer.pad_token id,
logging_dir="./logs",
logging_steps=1,
report_to=["tensorboard"],
logging_first_step=True,
per_device train_batch_size=2, # So we don't have too much memory allocation
gradient_accumulation_steps=16,
learning_rate=1e-5, # default 1e-4
num_generations=2,
num_train_epochs=3,
max_grad_norm=1.0,
use vlim=True,

35

Q10

def reward_len(completions, **kwargs):
return [-abs(100 - len(completion)) for completion in completions]

Generate the GRPOTrainer helper function
grpo_trainer = GRPOTrainer(
model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
reward funcs=reward len,
processing_class=tokenizer,
num_generations_per _prompt=2,

)

grpo_trainer.train()

36

Q10

Loss per training step

le7
1.0 - - Training Loss
0.8 A
0.6 -
V)
v
=
0.4 -
0.2
0.0 - s N\ /\J\—_/\ — -
0 10 20 30 40 50 60 70

Training Step Number

37

Training Loss

10,290,129.0

def run_experiment(model, tokenizer, input_text, model variant=""):
torch.cuda.empty_cache()

process = psutil.Process(os.getpid())
cpu_mem_before = process.memory_info().rss /(1024 * 1024)
gpu_mem_before = torch.cuda.memory_allocated(torch.device("cuda:0")) / (1024**2)

print(f"Starting experiment for {model_variant}")
print("CPU Memory before tokenization:", cpu_mem_before, "MB")
print("GPU Memory before tokenization:", gpu_mem_before, "MB")

start = time.time()
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
tokenization_time = time.time() - start

start_gen = time.time()

outputs = model.generate(
inputs["input_ids"],
max_length=200,
do_sample=True,
pad_token_id=tokenizer.eos token id,
attention_mask=inputs["attention_mask"],

)

generation_time = time.time() - start_gen

start_dec = time.time()
generated_text = tokenizer.decode(outputs[0], skip_special _tokens=True)
decoding_time = time.time() - start_dec

cpu_mem_after = process.memory_info().rss / (1024 * 1024)

gpu_mem_after = torch.cuda.memory_allocated(torch.device("cuda:0")) / (1024**2)
38

model, tokenizer = FastLanguageModel.from_pretrained(
model name = "openai-community/gpt2",
max_seq_length = 150,
fast_inference = True, # Enable vLLM

)

39

Q8

model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", device_map="'auto’)
Output

function findChains(n) return -1;\n\n

For simplicity: if you\'re interested in the set of all the known
pairs where i can be zero, and each iteration of the chain
consists of the given set of sets, and then you add (and
subtract) it from the other set of sets, you get\n\n

[n+1] + [n+2] + [n +3] = 1,\n\n

Q9

model_name = "unsloth/zephyr-sft-bnb-4bit",

Output

def longest_chain(arr,n): \r\n
arr.sort() \r\n
ans = 1\r\n
for iin range(1,n):\r\n
if arr[i] == arr[i-1]:\r\n
ans = max(ans,i-1):\r\n

ans = max(ans,i)\r\n “

