
CS 696 Applied Large Language Models
Spring Semester, 2025

Doc 24 MLOps
Apr 24, 2025

Copyright ©, All rights reserved. 2025 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/
openpub/) license defines the copyright on this document.

Advancing Invoice Document Processing at Uber

2

https://www.uber.com/en-IL/blog/advancing-invoice-document-processing-using-genai/

why i wont be vibe coding anymore

3

https://varunraghu.com/why-i-wont-be-vibe-coding-anymore/

i realized i hadn’t learnt a new concept in weeks

that’s when it struck me. coding isn’t about the finished product. its a lot like writing. its about
the process. its about how you approach a problem. its critical thinking.

and i don’t think i’m ready to let ai take these away from me. i’m going back to writing shitty
code, slowly and deliberately.

Issues with Building ML Systems

4

Ingest, clean, and validate fresh data

Training versus inference setups

Compute and serve features in the right environment

Serve the model in a cost-effective way

Version, track, and share the datasets and models

Monitor your infrastructure and models

Deploy the model on a scalable infrastructure

Automate the deployments and training

LLM Engineer’s Handbook, Lustin & Labonne

5

Monolithic batch pipeline architecture

6

Monolithic batch pipeline architecture

7

Features are not reusable (by your system or others)

If the data increases, you have to refactor the whole code to support PySpark or Ray

It’s hard to rewrite the prediction module in a more efficient language such as C++, Java, or Rust

It’s hard to share the work between multiple teams between the features, training, and prediction

modules

It’s impossible to switch to streaming technology for real-time training

Google Cloud

8

Figure 1.4: ML pipeline automation for CT (source: https://cloud.google.com/architecture/mlops-
continuous-delivery-and-automation-pipelines-in-machine-learning)

Feature, training, and inference (FTI) pipelines

9

Feature, training, and inference pipelines

10

3 independent components

Each can have its own tech stack

Each can be deployed intependently

Data Side

11

Collect data autonomously and on a schedule

Standardize the crawled data and store it in a data warehouse

Clean the raw data

Create instruct datasets for fine-tuning an LLM

Chunk and embed the cleaned data.

Store the vectorized data into a vector DB for RAG

Training

12

Fine-tune LLMs of various sizes

Fine-tune on instruction datasets of multiple sizes

Switch between LLM types (for example, between Mistral, Llama, and GPT)

Track and compare experiments

Test potential production LLM candidates before deploying them

Automatically start the training when new instruction datasets are available.

Inference Code needs

13

A REST API interface for clients to interact with the LLM Twin

Access to the vector DB in real time for RAG

Inference with LLMs of various sizes

Autoscaling based on user requests

Automatically deploy the LLMs that pass the evaluation step.

The system needs to support

14

Instruction dataset versioning, lineage, and reusability

Model versioning, lineage, and reusability

Experiment tracking

Continuous training, continuous integration, and continuous delivery (CT/CI/CD)

Prompt and system monitoring

FTI pipeline design

15

The data engineering team owns the data pipeline
The ML engineering team owns the FTI pipelines.

Feature Pipeline
Cleaning, chunking, and embedding
Two snapshots - fine-tuning, embedding

Training Pipeline
LLM agnostic pipeline?
What fine-tuning techniques to use?
How to scale the fine-tuning algorithm
How to pick an LLM production candidate?
How do you test the LLM?

Tooling

16

pyenv
poetry

Tooling - pyenv

17

Command-line tool to manage multiple Python versions

Multiple Python versions

Project-Specific versions
The correct version of Python will be used when in the project directory

pyinstall 3.11.8

Tooling - Poetry

18

Dependency and virtual environment management

pyproject.toml
Contains all the dependencies

Poetry resolves and installs project dependencies

[tool.poetry]
name = "llm-engineering"
version = "0.1.0"
description = ""
authors = ["iusztinpaul <p.b.iusztin@gmail.com>"]
license = "MIT"
readme = "README.md"

[tool.poetry.dependencies]
python = "~3.11"
zenml = { version = "0.74.0", extras = ["server"] }
pymongo = "^4.6.2"
click = "^8.0.1"
loguru = "^0.7.2"
rich = "^13.7.1"
numpy = "^1.26.4"
poethepoet = "0.29.0"
datasets = "^3.0.1"
torch = "2.2.2"

poetry install --without aws

Tooling - Poe the Poet - task execution tool

19

Lightweight task runner

[tool.poe.tasks]
test = "pytest"
format = "black ."
start = "python main.py"

pyproject.toml

poetry poe test
poetry poe format
poetry poe start

Tooling - Docker

20

Packages your application with only the libraries and dependencies it needs

Lightweight container

Docker images can run on any machine that has Docker installed

.env

21

OpenAI API Config
OPENAI_MODEL_ID=gpt-4o-mini
OPENAI_API_KEY=str

Huggingface API Config
HUGGINGFACE_ACCESS_TOKEN=str

Comet ML (during training and inference)
COMET_API_KEY=str

--- Required settings when deploying the code. ---
--- Otherwise, default values work fine. ---

MongoDB database
DATABASE_HOST="mongodb://llm_engineering:llm_engineering@127.0.0.1:27017"

Qdrant vector database
USE_QDRANT_CLOUD=false
QDRANT_CLOUD_URL=str
QDRANT_APIKEY=str

AWS Authentication
AWS_ARN_ROLE=str
AWS_REGION=eu-central-1
AWS_ACCESS_KEY=str
AWS_SECRET_KEY=str

ZenML: orchestrator, artifacts, and metadata

22

Develop, orchestrate, and maintain reproducible machine learning pipelines

Orchestrator - coordinates all the steps to run in a pipeline

Artifact Store
Houses all data that passes through the pipeline as inputs and outputs

ZenML: orchestrator, artifacts, and metadata

23

Pipeline-Oriented Architecture

pipelines—step-by-step processes
Each step runs in its own environment

Reproducibility and Versioning

Tracks artifacts and metadata
Roll back and compare runs.

Works with tracking tools to record experiments and results

Can orchestrate cloud operations

24

from zenml import pipeline, step

@step
def load_data() -> dict:
 training_data = [[1, 2], [3, 4], [5, 6]]
 labels = [0, 1, 0]
 return {'features': training_data, 'labels': labels}

@step
def train_model(data: dict) -> None:
 total_features = sum(map(sum, data['features']))
 total_labels = sum(data['labels'])

 print(f"Trained model using {len(data['features'])} data points. "
 f"Feature sum is {total_features}, label sum is {total_labels}")

@pipeline
def simple_ml_pipeline():
 dataset = load_data()
 train_model(dataset)

if __name__ == "__main__":
 run = simple_ml_pipeline()

File: my.py

25

rwhitney@127 test % python ml.py
Initiating a new run for the pipeline: simple_ml_pipeline.
Registered new pipeline: simple_ml_pipeline.
Using user: default
Using stack: default
 artifact_store: default
 orchestrator: default
Dashboard URL for Pipeline Run: http://127.0.0.1:8237/runs/62096b80-058f-4160-8cb2-9e2e1cabeb72
Step load_data has started.
Step load_data has finished in 0.068s.
Step train_model has started.
[train_model] Trained model using 3 data points. Feature sum is 21, label sum is 1
Step train_model has finished in 0.423s.
Pipeline run has finished in 0.600s.

Local Dashboard

26

27

Accessing

28

Iris Example

29

from typing_extensions import Tuple, Annotated
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.base import ClassifierMixin
from sklearn.svm import SVC

from zenml import pipeline, step

@step
def training_data_loader() -> Tuple[
 Annotated[pd.DataFrame, "X_train"],
 Annotated[pd.DataFrame, "X_test"],
 Annotated[pd.Series, "y_train"],
 Annotated[pd.Series, "y_test"],
]:
 """Load the iris dataset as tuple of Pandas DataFrame / Series."""
 iris = load_iris(as_frame=True)
 X_train, X_test, y_train, y_test = train_test_split(
 iris.data, iris.target, test_size=0.2, shuffle=True, random_state=42
)
 return X_train, X_test, y_train, y_test

Iris Example

30

@step
def svc_trainer(
 X_train: pd.DataFrame,
 y_train: pd.Series,
 gamma: float = 0.001,
) -> Tuple[
 Annotated[ClassifierMixin, "trained_model"],
 Annotated[float, "training_acc"],
]:
 """Train a sklearn SVC classifier and log to MLflow."""
 model = SVC(gamma=gamma)
 model.fit(X_train.to_numpy(), y_train.to_numpy())
 train_acc = model.score(X_train.to_numpy(), y_train.to_numpy())
 print(f"Train accuracy: {train_acc}")
 return model, train_acc

@pipeline
def training_pipeline(gamma: float = 0.002):
 X_train, X_test, y_train, y_test = training_data_loader()
 svc_trainer(gamma=gamma, X_train=X_train, y_train=y_train)

Iris Example

31

@pipeline
def training_pipeline(gamma: float = 0.002):
 X_train, X_test, y_train, y_test = training_data_loader()
 svc_trainer(gamma=gamma, X_train=X_train, y_train=y_train)

if __name__ == "__main__":
 training_pipeline()

Hyper-Parameter Tuning

32

from typing import Annotated
from sklearn.base import ClassifierMixin
from zenml import step

MODEL_OUTPUT = "model"

@step
def train_step(learning_rate: float) -> Annotated[ClassifierMixin, MODEL_OUTPUT]:
 """Train a model with the given learning-rate."""
 # <your training code goes here>
 ...

Hyper-Parameter Tuning

33

from zenml import pipeline
from zenml import get_step_context, step
from zenml.client import Client

@step
def selection_step(step_prefix: str, output_name: str):
 """Pick the best model among all training steps."""
 run = Client().get_pipeline_run(get_step_context().pipeline_run.name)
 trained_models = {}
 for step_name, step_info in run.steps.items():
 if step_name.startswith(step_prefix):
 model = step_info.outputs[output_name][0].load()
 lr = step_info.config.parameters["learning_rate"]
 trained_models[lr] = model

 # <evaluate and select your favorite model here>

@pipeline
def hp_tuning_pipeline(step_count: int = 4):
 after = []
 for i in range(step_count):
 train_step(learning_rate=i * 0.0001, id=f"train_step_{i}")
 after.append(f"train_step_{i}")

 selection_step(step_prefix="train_step_", output_name=MODEL_OUTPUT, after=after)

Hyper-Parameter Tuning

34

if __name__ == "__main__":
 hp_tuning_pipeline(step_count=4)()

Comet ML: experiment tracker

35

ML training is experimental and iterative

Comet ML logs
metrics
hyperparameters
output files
system configurations

36

Opik

37

Open-source platform for evaluating, testing, and monitoring LLM applications

Development
Track all LLM calls and traces
Try out different prompts and models

Evaluation
Store test cases and run experiments
Use Opik's LLM as a judge metric

Production Monitoring
Log production traces
Dashboards
Online evaluation metrics

Opik Logging

38

from opik.integrations.openai import track_openai
from openai import OpenAI

Wrap your OpenAI client
openai_client = OpenAI()
openai_client = track_openai(openai_client)

from opik import track
import anthropic

@track
def call_llm(client, messages):
 return client.messages.create(messages=messages)

client = anthropic.Anthropic()

call_llm(client, [{"role": "user", "content": "Why is tracking and evaluation of LLMs important?"}])

Opik Logging

39

from langchain_openai import OpenAI
from langchain.prompts import PromptTemplate
from opik.integrations.langchain import OpikTracer

Initialize the tracer
opik_tracer = OpikTracer()

Create the LLM Chain using LangChain
llm = OpenAI(temperature=0)

prompt_template = PromptTemplate(
 input_variables=["input"],
 template="Translate the following text to French: {input}"
)

Use pipe operator to create LLM chain
llm_chain = prompt_template | llm

Generate the translations
llm_chain.invoke({"input": "Hello, how are you?"}, callbacks=[opik_tracer])

Prompts

40

import opik

Create a new Prompt instance
prompt = opik.Prompt(
 name="Q&A Prompt",
 prompt="Hello, {{name}}! Welcome to {{location}}. How can I assist you today?",
 metadata={"temperature": 0.4}
)

Format the prompt with the given parameters
formatted_prompt = prompt.format(name="Alice", location="Wonderland")
print(formatted_prompt)

Downloading the Prompt

41

import opik

client = opik.Opik()

Get the most recent version of a prompt
prompt = client.get_prompt(name="Q&A Prompt")

Read metadata from the most recent version of a prompt
print(prompt.metadata)

Format the prompt with the given parameters
formatted_prompt = prompt.format(name="Alice", location="Wonderland")
print(formatted_prompt)

Databases

42

MongoDB: NoSQL database

Qdrant: vector database

AWS

43

SageMaker: training and inference compute

